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Abstract

This is a rough draft of notes for lectures which I am giving in Calcutta, provided for
the benefit of the students in Calcutta. The notes are deficient in many regards, not the
least of which is the inadequate referencing. If the notes are prepared for wider dissemi-
nation, this will need to be rectified. Part of this material was prepared in collaboration
with Kunszt, Melnikov and Zanderighi for a forthcoming review.
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1 Gamma matrices and the Dirac Eqn.

1.1 Definition of γ matrices

Both representations satisfy the same commutation relations.

γµγν + γνγµ = 2gµν (1.1)

γ5 = iγ0γ1γ2γ3 (1.2)

γR =
1

2
(1 + γ5), γL =

1

2
(1− γ5) (1.3)

1.2 Fierz transformation

Λ
(i)
32 ⊗ Λ

(i)
14 =

5
∑

j=1

λij Λ
(j)
12 ⊗ Λ

(j)
34

where Λ(i) = (1, γµ, σµν/
√

2, γµγ5, γ5) and σµν = i
2 [γµ, γν ].

λij =
1

4













+1 +1 +1 −1 +1
+4 −2 0 −2 −4
+6 0 −2 0 +6
−4 −2 0 −2 +4
+1 −1 +1 +1 +1













, (1.4)

Using this relation it is easy to show that

(γµγL)32 ⊗ (γµγL)14 = −(γµγL)12 ⊗ (γµγL)34 (1.5)

and that
(γµγR)32 ⊗ (γµγL)14 = 2(γR)12 ⊗ (γL)34 (1.6)

1.3 Dirac eqn. Massless fermions

• The fermions involved in high energy processes can often be taken to be massless.

• We choose an explicit representation for the gamma matrices. The Bjorken and
Drell representation is,

γ0 =

(

1 0

0 −1

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

0 1

1 0

)

, (1.7)

The Weyl representation is more suitable at high energy

γ0 =

(

0 1

1 0

)

, γi =

(

0 −σi

σi 0

)

, γ5 =

(

1 0

0 −1

)

, (1.8)

In the Weyl representation upper and lower components have different helicities.

γR =
1

2
(1 + γ5) =

(

1 0

0 0

)

, γL =
1

2
(1− γ5) = =

(

0 0

0 1

)

, (1.9)
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• Both representations satisfy the same commutation relations.

γµγν + γνγµ = 2gµν (1.10)

• in the Weyl representation γ0γi =

(

σi 0

0 −σi

)

. σ are the Pauli matrices.

In order to derive an explicit solution for the massless Dirac equation 6pu(p) = 0 it is
useful to write out an explicit expression for 6p = γ0p0 − γ1p1 − γ2p2 − γ3p3 in the Weyl
representation.

6p =









0 0 p+ p1 − ip2

0 0 p1 + ip2 p−

p− −p1 + ip2 0 0
−p1 − ip2 p+ 0 0









, (1.11)

where p± = p0 ± p3.

• The massless spinors solns of Dirac eqn are

u+(p) =









√

p+
√

p−eiϕp

0
0









, u−(p) =









0
0

√

p−e−iϕp

−
√

p+









, (1.12)

where

e±iϕp ≡ p1 ± ip2

√

(p1)2 + (p2)2
=

p1 ± ip2

√

p+p−
, p± = p0 ± p3. (1.13)

Note that in the limit p+ = p1 = p2 = 0 these solutions become

u+(p) =









0
√

2p0

0
0









, u−(p) =









0
0

√

2p0

0









, (1.14)

In this representation the Dirac conjugate spinors are

u+(p) ≡ u†+(p)γ0 =
[

0, 0,
√

p+,
√

p−e−iϕp
]

(1.15)

u−(p) =
[

√

p−eiϕp ,−
√

p+, 0, 0
]

(1.16)

• Normalization
u†±u± = 2p0 (1.17)

Introduce a bra and ket notation spinors corresponding to (massless) momenta pi,
i = 1, 2, . . . , n labelled by the index i

|i±〉 ≡ |p±i 〉 ≡ u±(pi) = v∓(pi), (1.18)

〈i±| ≡ 〈p±i | ≡ u±(pi) = v∓(pi). (1.19)
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We define the basic spinor products by

〈ij〉 ≡ 〈i−|j+〉 = u−(pi)u+(pj), [ij] ≡ 〈i+|j−〉 = u+(pi)u−(pj). (1.20)

The helicity projection implies that products like 〈i+|j+〉 vanish.

〈i+ |j+〉 = 〈i− |j−〉 = 〈ii〉 = [ii] = 0 (1.21)

〈ij〉 = −〈ji〉, [ij] = −[ji] (1.22)

It is appropriate here to comment on alternative notations. Since the left-handed
and right-handed spinors occupy different subspaces, we write them in terms in terms of
two-index spinors, (also called holomorphic and anti-holomorphic spinors).

|j− >= (λj)α, |j+ >= (λ̃j)α̇ (1.23)

In terms of these spinors we see that

〈j k〉 = εαβ(λj)α(λk)β̇

[j k] = εα̇β̇(λ̃j)α̇(λ̃k)β̇ (1.24)

where εαβ is the antisymmetric tensor in two dimensions. The two different types of
indices, dotted and undotted, both run from 1 to 2. Dotted indices are only contracted
with other dotted indices, and undotted indices are only contracted with other undotted
indices.

1.4 Spinor products

We get explicit formulae for the spinor products valid for the case when both energies
are positive, p0

i > 0, p0
j > 0

〈i j〉 =
√

p−i p
+
j e

iϕpi −
√

p+
i p

−
j e

iϕpj =
√

|sij |eiφij ,

[i j] =
√

p+
i p

−
j e

−iϕpj −
√

p−i p
+
j e

−iϕpi = −
√

|sij|e−iφij (1.25)

where sij = (pi + pj)
2 = 2pi · pj, and

cosφij =
p1

i p
+
j − p1

jp
+
i

√

|sij|p+
i p

+
j

, sinφij =
p2

i p
+
j − p2

jp
+
i

√

|sij|p+
i p

+
j

. (1.26)

• The spinor products are, up to a phase, square roots of Lorentz products.

• For real momenta we have that 〈i j〉∗ = [j i], Note, however, that for complex
momenta this is no longer true.

• The collinear limits of massless gauge amplitudes have square-root singularities;
spinor products lead to very compact analytic representations of gauge amplitudes.

By explicit construction we can show that

|B+〉〈C − | − |C+〉〈B − | = 〈C − |B+〉γR (1.27)
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〈pq〉 = 〈p− |q+〉, [pq] = 〈p + |q−〉
〈p± |γµ|p±〉 = 2pµ

〈p + |q+〉 = 〈p− |q−〉 = 〈pp〉 = [pp] = 0

〈pq〉 = −〈qp〉, [pq] = −[qp]

2|p±〉〈q ± | = 1
2
(1± γ5)γ

µ〈q ± |γµ|p±〉
〈pq〉∗ = −sign(p · q)[pq] = sign(p · q)[qp]

|〈pq〉|2 = 〈pq〉〈pq〉∗ = 2|p · q| ≡ |spq|
〈pq〉[qp] = 2p · q ≡ spq

〈p± |γµ1 . . . γµ2n+1 |q±〉 = 〈q ∓ |γµ2n+1 . . . γµ1 |p∓〉
〈p± |γµ1 . . . γµ2n

|q∓〉 = −〈q ± |γµ2n
. . . γµ1 |p∓〉

〈AB〉〈CD〉 = 〈AD〉〈CB〉+ 〈AC〉〈BD〉, (Schouten)

〈A + |γµ|B+〉〈C − |γµ|D−〉 = 2[AD]〈CB〉, (Fierz)

〈A± |γµ|B±〉 γµ = 2

[

|A∓〉〈B ∓ |+ |B±〉〈A± |
]

, (Fierz + Chargeconjugation)

Table 1.1: Relations for massless spinors

Thus we get the Schouten identity

〈A− |B+〉〈C − |D+〉 − 〈A− |C+〉〈B − |D+〉 = 〈C − |B+〉〈A− |D+〉

or written more concisely,

〈AB〉〈C D〉 − 〈AC〉〈BD〉 = 〈C B〉〈AD〉
[AB][C D]− [AC][BD] = [C B][AD] (1.28)

For polarization with momentum k and gauge vector b

ε±µ (k, b) = ±〈k ± |γµ|b±〉√
2〈b∓ |k±〉

(1.29)

Hence we have that

ε+µ (k, b) =
〈k + |γµ|b+〉√

2〈bk〉
, ε−µ (k, b) =

〈k − |γµ|b−〉√
2[kb]

(1.30)

and

γµε+µ (k, b) =

√
2
[

|k−〉〈b − |+ |b+〉〈k + |
]

〈bk〉 (1.31)
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γµε−µ (k, b) =

√
2
[

|k+〉〈b + |+ |b−〉〈k − |
]

[kb]
(1.32)

Different choices of the vector b correspond to different choices of gauge. Thus

ε+µ (k, b) − ε+µ (k, c) =
〈k + |γµ|b+〉√

2〈bk〉
− 〈k + |γµ|c+〉√

2〈ck〉
=

1√
2〈bk〉〈ck〉

[

〈k + |γµ|b+〉〈ck〉 − 〈k + |γµ|c+〉〈bk〉
]

=
1√

2〈bk〉〈ck〉
[

〈k + |γµ|k+〉〈cb〉
]

=

√
2〈cb〉

〈bk〉〈ck〉kµ (1.33)

where we have used Eq. (1.27).

1.5 Charge conjugation

In QED we have
(

(+i∇µ + eAµ)γµ −m
)

ψ = 0 (1.34)

Taking the complex conjugate

(

(−i∇µ + eAµ)γ∗µ −m
)

ψ∗ = 0 (1.35)

The equation satisfied by the charge conjugate state is

(

(+i∇µ − eAµ)γµ −m
)

ψc = 0 (1.36)

The operation of charge conjugation is therefore given by

ψc = Cγ0ψ∗ (1.37)

where the matrix C is determined up to a phase by the condition (Cγ0)γµ∗(Cγ0)−1 = −γµ.
Since for our representation γ0γµ ∗γ0 = γµ T the defining condition on matrix C can

be written
C−1γµC = −γµT (1.38)

We choose the phase such that

C = iγ2γ0 =

(

iσ2 0

0 −iσ2

)

(1.39)

=









0 −1 0 0
+1 0 0 0
0 0 0 +1
0 0 −1 0









, (1.40)

so that CT = C−1 = −C For free particle spinors we have that

v±(p) = CuT
±(p), (1.41)
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v+(p) =
1

√

p+









0
m

px − ipy

−p+









(1.42)

v−(p) =
1

√

p+









p+

px + ipy

−m
0









(1.43)

In this representation the Dirac conjugate spinors are

v+(p) ≡ u†+(p)γ0 =
1

√

p+

[

px + ipy,−p+, 0,m
]

(1.44)

v−(p) =
1

√

p+

[

−m, 0, p+, px − ipy

]

(1.45)

Note that
∑

λ

uλ(p)ūλ(p) = 6p+mI (1.46)

∑

λ

vλ(p)v̄λ(p) = 6p−mI (1.47)

and that

ūλ1uλ2 = +2mδλ1λ2 (1.48)

v̄λ1vλ2 = −2mδλ1λ2 (1.49)

and that
ūλ1(P )vλ2(P ) = v̄λ1(P )uλ2(P ) = 0 (1.50)

In summary

u+(p) =
1

√

p+









p+

px + ipy

m
0









, u+(p) =
1

√

p+

[

m, 0, p+, px − ipy

]

(1.51)

u−(p) =
1

√

p+









0
−m

px − ipy

−p+









, u−(p) =
1

√

p+

[

px + ipy,−p+, 0,−m
]

(1.52)

v+(p) =
1

√

p+









0
m

px − ipy

−p+









v+(p) =
1

√

p+

[

px + ipy,−p+, 0,m
]

(1.53)

v−(p) =
1

√

p+









p+

px + ipy

−m
0









v−(p) =
1

√

p+

[

−m, 0, p+, px − ipy

]

(1.54)
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Thus in the massless case we get

|p+ >=
1

√

p+









p+

px + ipy

0
0









, < p+ | = 1
√

p+

[

0, 0, p+, px − ipy

]

(1.55)

|p− >=
1

√

p+









0
0

px − ipy

−p+









, < p− | = 1
√

p+

[

px + ipy,−p+, 0, 0
]

(1.56)

γµε+µ (k, b) =

√
2
[

|k−〉〈b − |+ |b+〉〈k + |
]

〈bk〉 (1.57)

γµε−µ (k, b) =

√
2
[

|k+〉〈b + |+ |b−〉〈k − |
]

[kb]
(1.58)

1.6 Fierz+Charge conjugation identity

We want to show the identity,

γµ ⊗ 〈A− |γµ|B−〉 = 2

[

|A+〉〈B + |+ |B−〉〈A− |
]

(1.59)

it is helpful to make the indices explicit, so we can rewrite this as

γµ
ij 〈A−, k|(γµγL)kl|B−, l〉 = 2

[

|A+, i〉〈B+, j| + |B−, i〉〈A−, j|
]

(1.60)

The indices which are normally left implicit, have been added to the bras and kets which
remind us that these are four component objects. Eq. (1.60) can be written as two
separate equations

(γµγR)ij 〈A−, k|(γµγL)kl|B−, l〉 = 2

[

|B−, i〉〈A−, j|
]

(γµγL)ij 〈A−, k|(γµγL)kl|B−, l〉 = 2

[

|A+, i〉〈B+, j|
]

(1.61)

It is easy to show that the first of these relations follows as a consequence of Eq. (1.6).
The second would also follow as a consequence of the same equation if we are able to
show that

〈A−, k|(γµγL)kl|B−, l〉 = 〈B+, k|(γµγR)kl|A+, l〉 (1.62)

We shall now show that this equation follows as a consequence of the relations obeyed
under charge conjugation by massless spinors.

u− = CūT
+, u+ = CūT

− (1.63)
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and hence that
ūT

+ = −Cu− (1.64)

since C−1 = −C = CT . Thus for massless spinors we have that

ū+(pB)γµu+(pA) = −ūT
−(pB)CTγµCūT

−(pA) (1.65)

Since from Eq.(1.38)
C−1γµC = −(γµ)T (1.66)

this allows us to prove that

〈A− |γµ|B−〉 = 〈B + |γµ|A+〉 (1.67)

as well as the generalizations in Table 1.1.

2 Applications of spinor calculus to tree graphs

For the most part we shall exploit the remarkable simplifications which come when we
consider only massless quarks.

2.1 cs̄→W+ → νe+

Consider the process
e− + c← ν + s (2.1)

The matrix element is given by

M =
(−igW )2

2

(−i)
Pw(seν)

〈ν − |γα|e−〉 〈s − |γα|c−〉 ≡
ig2

W

PW (seν)
〈νs〉 [ce] (2.2)

where PX(p) = p2−m2
X + imXΓX and that is the answer. We can identify g2

W /8/M2
W =

GF /
√

2 by taking the low energy limit. We have assumed that all fermions, inlcuding
the charmed quark are massless.

Compare the calculation performed using the traditional method with the traces. The
matrix element is given by

M∝ ū(ν)γαγLu(e) ū(s)γαγLu(c) (2.3)
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|M|2 = Tr{6νγαγL6eγβγL}{6sγαγL6cγβγL}
= 4 {ναeβ + νβeα − gαβe · ν + iǫαβγδνγeδ}
× {sαcβ + sβcα − gαβc · s+ iǫαβρσs

ρcσ}
= 4 e · c s · ν (2.4)

where we have used
ǫαβγδǫαβρσ = −2

[

gγ
ρg

δ
σ − gγ

σg
δ
ρ

]

(2.5)

Using the spinor method the γ-matrix algebra simply disappears.

2.2 Top production and decay

If we write down amplitude we get, say for a left-handed initial quark line.

M =
g4
w

4

g2
s

2

1

D
(τA)i2i3(τ

A)i1i4〈ν − |γµ|ē−〉 〈e− |γν |ν̄−〉 〈2− |γα|3−〉
× ū(b)γRγµ(6p1 +mt)γα(−6p4 +mt)γνγLv(b̄) (2.6)

where

D = PW (ν + ē) PW (ν̄ + e) Pt(p1) Pt(p4) (p2 + p3)
2

PX(p) = p2 −m2
X + imXΓX (2.7)

The tau’s are the colour matrices normalised so that

TrτAτB = δAB . (2.8)

All sorts of factors of i are missing, but since there is only one diagram, we don’t care.
(We are only keeping diagrams with two resonant top propagators). Using the Fierz
identity twice we get

M = g4
w

g2
s

2

1

D
(τA)i2i3(τ

A)i1i4 〈2− |γα|3−〉
ū(b)|ν+〉 〈ē+ |(6p1 +mt)γα(−6p4 +mt)|e+〉 〈ν̄ + |v(b̄) (2.9)

If we further create massless vectors p̂1, p̂4 out of p1 and p4 by subtracting pieces propor-
tional to the vectors ē and e respectively

p1 = p̂1 +
m2

t

2p1 · ē
ē (2.10)

p4 = p̂4 +
m2

t

2p4 · e
e (2.11)

we can further simplify this to read

M = g4
wg

2
s

1

D
(τA)i2i3(τ

A)i1i4

√
2b · ν

√

2b̄ · ν̄
{

− [ē 1̂]〈1̂ 2〉[3 4̂]〈4̂ e〉+m2
t [ē 3]〈2 e〉

}

(2.12)

A remarkable simple result which treats the top quarks as on shell, but preserves all the
spin correlations. This calculation is given in [1]. A similar result can be produced for
the gg → tt̄ process[1].
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2.2.1 Homework assignment

Ref. [1] contains a serious mistake/typographical error. Find it!

2.3 eeγγ

The relevant diagram is shown in Fig. 2.3. We shall consider only the case of a left-handed
electron line.

M = (−ie)2i
[〈1− |6ε2(61 + 62)6ε3|4−〉

〈1 2〉[2 1]
+
〈1− |6ε3(61 + 63)6ε2|4−〉

〈1 3〉[3 1]

]

(2.13)

Using Eq. (1.31) for the polarization vectors we obtain the result where both polarizations
are positive

M(1−, 2+
γ , 3

+
γ , 4

+
ē ) =

−2ie2

〈b2 2〉〈b3 3〉
[〈1 b2〉[2 1]〈1 b3〉[3 4]

〈1 2〉[2 1]
+
〈1 b3〉[3 1]〈1 b2〉[2 4]

〈1 3〉[3 1]

]

(2.14)

Making the gauge choice b2 = b3 = 1 this gives zero. Inserting the case where the
polarizations are (+−) we get

M(1−, 2+
γ , 3

−
γ , 4

+
ē ) =

−2ie2

〈b2 2〉[3 b3]
[〈1 b2〉[2 1]〈1 3〉[b3 4]

〈1 2〉[2 1]
+
〈1 3〉〈b3 + |(61 + 63)|b2+〉[2 4]

〈1 3〉[3 1]

]

(2.15)

Making the gauge choice b2 = 1, b3 = 4, the first diagram gives no contribution this gives

M(1−e , 2
+
γ , 3

−
γ , 4

+
ē ) =

−2ie2

〈1 2〉[3 4]

〈1 3〉[4 3]〈3 1〉[2 4]

〈1 3〉[3 1]
= 2ie2

〈3 1〉[2 4]

〈1 2〉[3 1]
≡ 2ie2

[2 4]2

[3 4][3 1]

(2.16)

In deriving the latter formula we have used momentum conservation. Note that the result
is of second degree in |2+〉 and |3−〉 as it must be for a (+-) amplitude, and also of first
degree in |1−〉 and |4+〉.

In summary we find

M(1−e , 2
−
γ , 3

+
γ , 4

+
ē ) = 2ie2

[2 4]2

[3 4][3 1]

M(1−e , 2
+
γ , 3

−
γ , 4

+
ē ) = 2ie2

[3 4]2

[2 4][2 1]

M(1−e , 2
+
γ , 3

+
γ , 4

+
ē ) = 0

M(1−e , 2
−
γ , 3

−
γ , 4

+
ē ) = 0 (2.17)
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Changing the helicities of all particles can be obtained by 〈〉 ↔ [].
Including all four non-vanishing polarizations, we get for the spin-summed matrix

element squared.
∑

hel

|M|2 = 8e4
[s13
s12

+
s12
s13

]

(2.18)

3 Relations between tree amplitudes

3.1 Colour

There are two different conventions for the colour matrices.

[tA, tB ] = ifABCtC ,

T r(tA, tB) =
1

2
δAB

∑

A

tAij t
A
kl =

1

2
δil δkj −

1

2N
δij δkl

fABC = −2iTr[tA, tB ]tC (3.1)

It also convenient to define τ = t
√

2.

[τA, τB ] = i
√

2fABCτC ,

T r(τA, τB) = δAB

∑

A

τA
ij τ

A
kl = δil δkj −

1

N
δij δkl

fABC = − i√
2
Tr[τA, τB ]τC (3.2)

In the rest of these lectures we shall adopt the second convention. Let us now consider
the general colour structure for a tree-level n-gluon amplitude.

Mn = gn−2
∑

σ=Sn/Zn

Tr(τaσ(1)τaσ(2) . . . τaσ(n)) m(σ(1λ1), . . . , σ(nλn))

(3.3)

where Sn is the set of all the permutations of n objects and Zn is the subset of cyclic
permutations. Thus for example we have,

M4 = g2Tr (τa1τa2τa3τa4) m(1λ1 , 2λ2 , 3λ3 , 4λ4)

+ 5 other permutations (3.4)

The color-stripped amplitudes are simpler than the full amplitudes because they receive
contributions only from a particular ordering of the gluons. Colour stripped amplitudes
have poles only in invariants made out of adjacent momenta.
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We can do a similar decomposition for the amplitude with two external quarks and
n− 2 gluons.

Mn = gn−2
∑

σ=S(n−2)

(τaσ(2) . . . τaσ(n−1))i1in m(1λ1
q , σ(2λ2) . . . , σ((n − 1)λn−1), nλn

q̄ )

(3.5)

3.2 The quark-gluon scattering process

The Feynman rules for QCD are shown in Fig. 3.1.
As a further example of the use of spinor techniques we will consider the process

shown in Fig. (3.2).
0→ q(p1) + g(p2) + g(p3) + q̄(p4) (3.6)

where the momentum labels are indicated in brackets

• We shall first decompose the amplitude interms of colour ordered sub-amplitudes.
The sub-amplitudes are gauge invariant

M(p1, h1; p2, h2; p3, h3; p4, h4) = (3.7)

g2 τA2τA3m1(h1, h2, h3, h4) + g2 τA3τA2m2(h1, h3, h2, h4) (3.8)

∑

|M |2 = g4N
2 − 1

N

[

N2(|m1|2 + |m2|2)− |m1 +m2|2
]

(3.9)

• subleading terms in N ≡ QED. Colour ordered amplitudes are obtained by using
the relation

fABC = − i√
2
Tr[τA, τB ]τC (3.10)

to simplify diagrams containing the three and four gluon vertices and by also using
the SU(N) crossing relation

∑

A

τA
ij τ

A
kl = δil δkj −

1

N
δij δkl . (3.11)

• Simplify the calculation by astute choice of the reference momenta. calculate m1

only, the positive helicity quark line

m
(a)
2 =

−i
2
〈p1 + |6ε2

(6p1 + 6p2)

〈p2p1〉[p1p2]
6ε3|p4+〉 (3.12)

m(b)
q = 0 (3.13)

m(c)
q =

−i
〈p2p3〉[p3p2]
[

ε2 · ε3 〈p1,+|6p3|p4,+〉+ ε3 · p2 〈p1,+|6ε2|p4,+〉

− ε2 · p3 〈p1,+|6ε3|p4,+〉
]

(3.14)
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Figure 3.1: Feynman rules for QCD
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Figure 3.2: Feynman diagrams for the process q → ggq.

When the helicities of the two gluons are the same we shall choose the two reference
momenta b2, b3 to be the same; it then follows that ε2 · ε3 = 0. For the positive
helicity case we choose b2 = b3 = p4 so that

6ε2+|p4,+〉 = 6ε3+|p4,+〉 = 0 (3.15)

None of the diagrams contribute to m1(+,+,+,−). A similar simplification occurs
for the m1(+,−,−,−). choosing b2 = b3 = p1.

• For the mixed helicity case it is convenient to choose b2 = p3 and b3 = p2, so that
ε2 · ε3 = ε2 · p3 = ε3 · p2 = 0. The full result comes from the first diagram alone

m1(1
+
q , 2

+
g , 3

+
g , 4

−
q̄ ) = 0 (3.16)

m1(1
+
q , 2

−
g , 3

−
g , 4

−
q̄ ) = 0 (3.17)

m1(1
+
q , 2

+
g , 3

−
g , 4

−
q̄ ) = −i 〈34〉3〈13〉

〈12〉〈23〉〈34〉〈14〉 (3.18)

m1(1
+
q , 2

−
g , 3

+
g , 4

−
q̄ ) = i

[13]3[34]

[12][23][34][14]
(3.19)

• We have calculated the quark gluon scattering matrix element in an non-Abelian
theory, with no net contribution from the diagram involving the three gluon vertex.
Its effect is completely fixed by gauge invariance.

• The non-zero amplitudes m2 can be obtained by Bose symmetry.

m2(1
+
q , 2

+
g , 3

−
g , 4

−
q̄ ) = i

[12]3[24]

[13][32][24][14]
(3.20)

m2(1
+
q , 2

−
g , 3

+
g , 4

−
q̄ ) = −i 〈24〉3〈12〉

〈13〉〈32〉〈24〉〈14〉 (3.21)

(3.22)

Because of the parity invariance of the strong interactions we have that

m(h1, h2, h3, h4) = m∗(−h1,−h2,−h3,−h4) (3.23)

The final result for sum of the squared amplitudes

∑

c,h

|M |2 = 2g4 (N2 − 1)

N

[

N2(1− 2
tu

s2
)− 1

]

(
u

t
+
t

u
) (3.24)

where we have defined s = (p2 + p3)
2, t = 2p1.p2, u = 2p1.p3.
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3.3 Three point vertices

By direct insertion of the Feynman rules we have

A(1+
g , 2

−
q̄ , 3

+
q ) = −i

√
2g(ta1)i3i2

[3 1]〈b 2〉
〈b 1〉 = −i

√
2g(ta1)i3i2

[1 3]2

[2 3]
(3.25)

A(1−g , 2
−
q̄ , 3

+
q ) = −i

√
2g(ta1)i3i2

[3 b]〈1 2〉
[1 b]

= −i
√

2g(ta1)i3i2

〈1 2〉2
〈2 3〉 (3.26)

where [ta1 , ta2 ] = ifa1a2a3ta3 . By the same token we have that, (choosing the gauge vector
b the same for all polarizations,

A(1+
g , 2

−
g , 3

+
g ) = gfa1a2a3

[

ǫ2 · ǫ32ǫ1 · p2 − ǫ1 · ǫ22ǫ3 · p2

]

=
√

2gfa1a2a3
〈2 b〉2[3 1][b 2]

[2 b]〈b 3〉〈b 1〉 =
√

2gfa1a2a3
[1 3]3

[2 3][1 2]

= −i
√

2g(F a1)a3a2

[1 3]3

[2 3][1 2]
(3.27)

where (F a1)a3a2
= ifa1,a2,a3 , so that [F a1 , F a2 ] = ifa1a2a3F a3 .

A(1−g , 2
−
g , 3

+
g ) = gfa1a2a3

[

ǫ3 · ǫ12ǫ2 · p3 − ǫ2 · ǫ32ǫ1 · p3

]

=
√

2gfa1a2a3
[3 b]2

[b 1][b 2]〈b 3〉
[

〈1 b〉〈2 3〉 − 〈2 b〉〈1 3〉
]

=
√

2gfa1a2a3
[3 b]2〈1 2〉
[b 1][b 2]

= −
√

2gfa1a2a3
〈1 2〉3
〈2 3〉〈1 3〉

+ i
√

2g(F a1)a3a2

〈1 2〉3
〈2 3〉〈1 3〉 (3.28)

These three point vertices can only be defined for complex momenta, since we have

p1 · p2 = p2 · p3 = p3 · p1 = 0 (3.29)

Thus for example we have that in Eq. (3.25), 〈1 2〉 = 〈2 3〉 = 〈3 1〉 = 0.
If we were to take the fermions in the adjoint representation

(ta1)i3i2 → (F a1)a3a2 (3.30)

we would have that

A(1−g , 2
−
g , 3

+
g ) = −A(1−g , 2

−
q̄ , 3

+
q )
〈1 2〉
〈1 3〉

A(1+
g , 2

−
g , 3

+
g ) = +A(1+

g , 2
−
q̄ , 3

+
q )

[1 3]

[1 2]
(3.31)
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3.4 Susy relations between amplitudes

We would like to use supersymmetry to relate tree amplitudes in QCD graphs. The
material in this section is taken almost verbatim from Mangano and Parke, ref.[2]. We
encourage the students to look at ref. [2] for a definitive treatment.

Since QCD is not a supersymmetric theory, why should QCD amplitudes be related by
supersymmetric transformations? The answer is that once the colour degrees of freedom
have been stripped off, there is no difference between a massless quark and massless
gluino.

We will obtain relations based on the commutator of a global supersymmetric charge
with a string of field operators. We assume that the supersymmetric charge annihilates
the vacuum, so that

0 = 〈[Q,φ1φ2φ3 . . . φn]〉
= 〈[Q,φ1]φ2φ3 . . . φn〉+ 〈φ1 [Q,φ2] , φ3 . . . φn〉+ . . . (3.32)

So we need the commutators of the SUSY charges with gluons g and gluinos Λ. We
multiply the supersymmetric charge Q by Grassman spinor parameter to obtain Q(η).
Then Q(η) acts on the doublet (g,Λ) as follows[3, 2]

[Q(η), g±(p)] = ∓ Γ±(p, η) Λ±, (3.33)

[Q(η),Λ±(p)] = ∓ Γ∓(p, η) g±. (3.34)

Γ±(p, η) is a complex function linear in the anticommuting c-number components of η
and satisfies:

Γ+(p, η) = [Γ−(p, η)]∗ = η̄ u−(p), (3.35)

The function Γ has its form constrained Jacobi identity

[[Q(η), Q(ξ)], φ] + [[Q(ξ), φ], Q(η)] + [[φ,Q(η)], Q(ξ)] = 0 (3.36)

Since [Q(η), Q(ξ)] = 2iη̄6Pξ we derive the relation

Γ+(k, η)Γ−(k, ξ) + Γ−(k, η)Γ+(k, ξ) = −2iη̄6Pξ (3.37)

with u−(p) a negative helicity spinor satisfying the massless Dirac equation with mo-
mentum p. Because of the arbitrariness in choosing the supersymmetry parameter η,
we choose this to be a negative helicity spinor obeying the Dirac equation with an ar-
bitrary massless momentum k times a Grassmann variable θ. θ implies that Γ±(p, η)
anti-commutes with the fermion creation and annihilation operators and commutes with
the bosonic operators.

Γ+(p, k) ≡ Γ+(p, η(k)) = θ〈k + |p−〉 ≡ θ [kp]. (3.38)

As a notation, we choose to label the supersymmetry charge Q(η) with the momentum
k characterising the parameter η: Q(k) = Q[η(k)]. We can now operate with Q(η) on s
string of gluon and gluino fields and take the vacuum expectation value.

0 = 〈
[

Q,Λ+
1 g

+
2 g

+
3 . . . g

+
n

]

〉 = −Γ−(p1, k) A(g+
1 , g

+
2 , . . . , g

+
n )

+Γ+(p2, k) A(Λ+
1 ,Λ

+
2 , . . . , g

+
n ) + · · ·+ Γ+(pn, k) A(Λ+

1 , g
+
2 , . . . ,Λ

+
n ). (3.39)
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Since all of the amplitudes involving gluinos Λ vanish, we conclude that gluon amplitudes
with all helicities the same must be zero.

To prove a similar theorem for amplitudes with one helicity flip, let us consider the
following identity:

0 = 〈
[

Q,Λ+
1 g

−
2 g

+
3 . . . g

+
n

]

〉 =
− Γ−(p1, k) A(g+

1 , g
−
2 , . . . , g

+
n ) + Γ−(p2, k) A(Λ+

1 ,Λ
−
2 , . . . , g

+
n ). (3.40)

In the above equation we have dropped all of the amplitudes with both fermions having
the same helicity, which must vanish by helicity conservation. Eq. (3.40) must be satisfied
for any choice of the vector k, and in particular we can then choose k = p2, proving
that the gluonic amplitude must vanish, or k = p1, thus proving the vanishing of the
amplitudes with the fermion pair.

For the maximally helicity violating amplitude we have (g−1 , g
−
2 , g

+
3 , . . . , g

+
n ), with two

negative-helicity gluons and n − 2 positive-helicity gluons where all of the particles are
outgoing.

Γ−(p1, k)A(Λ−
1 , g

−
2 ,Λ

+
3 , g

+
4 , . . . , g

+
n ) + Γ−(p2, k)A(g−1 ,Λ

−
2 ,Λ

+
3 , g

+
4 , . . . , g

+
n )

− Γ−(p3, k)A(g−1 , g
−
2 , g

+
3 , . . . , g

+
n ) = 0. (3.41)

Choosing, for example, k = p1 we therefore obtain the following relation:

A(g−1 , g
−
2 , g

+
3 , . . . , g

+
n ) =

〈1 2〉
〈1 3〉A(g−1 ,Λ

−
2 ,Λ

+
3 , g

+
4 , . . . , g

+
n ) (3.42)

We can now apply this theorem to the specific four parton case that we have calculated
in the section. For the two quark, two gluon case we obtain from Eq. (3.18) (performing
the swap (1↔ 3, 2↔ 4) that

m1(1
−
g , 2

−
q̄ , 3

+
q , 4

+
g ) = −i 〈12〉3〈31〉

〈34〉〈41〉〈12〉〈32〉 (3.43)

Hence the result for the four gluon helicity amplitude is,

m1(1
−
g , 2

−
g , 3

+
g , 4

+
g ) = −i 〈12〉4

〈12〉〈23〉〈34〉〈41〉 (3.44)

This is the only non-vanishing amplitude for the four gluon case.

3.5 BCFW

We have seen that Supersymmetry has allowed us to calculate simple gluonic amplitudes
by relating them to amplitudes involving gluinos (ie quarks) and gluons, with the same
number of external legs. We now want to illustrate the technique for something more
ambitious, namely sewing together on-shell amplitudes to produce tree graphs with larger
numbers of legs[4]. Rather than describing the on-shell recursion in detail, we shall decribe
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ggg gq̄q

m(1−, 2−, 3+) 〈1 2〉3
〈2 3〉〈1 3〉 − 〈1 2〉2

〈2 3〉

m(1+, 2−, 3+) [1 3]3

[1 2][2 3]
[1 3]2

[2 3]

Table 3.1: Relations between color-stripped amplitudes for different three parton processes

gggg gq̄qg Q̄q̄qQ

m(1−, 2−, 3+, 4+) 〈1 2〉3
〈2 3〉〈3 4〉〈4 1〉 − 〈1 2〉2〈1 3〉

〈2 3〉〈3 4〉〈4 1〉 − 〈1 2〉2
〈2 3〉〈4 1〉

m(1−, 2−, 3−, 4+) 0 0 0

Table 3.2: Relations between color-stripped amplitudes for different four parton processes

the opposite process, effectively decomposing the 4-gluon MHV amplitude (Eq. (3.44))
into the product of two on-shell three gluon momenta, but at shifted momenta.

We define the shifted momenta 1→ 1̂, 4→ 4̂ as

λ̃1 → λ̃1 + zλ̃4

λ4 → λ4 − zλ1 (3.45)

Because λ̃j ≡ |j], λj ≡ |j〉, in the bra ket notation this is equivalent to

kµ
1 → kµ

1̂
(z) = kµ

1 + z
2〈1|γµ|4]

kµ
4 → kµ

4̂
(z) = kµ

4 − z
2〈1|γµ|4] (3.46)

This makes the external momenta k1 and k4 complex, but preserves overall momentum
conservation. In addition the vectors k1̂, k4̂ are still lightlike. We indicate these shifted
z-dependent momenta by putting a hat over them.

Furthermore we have the following behaviour of the spinor products under this shift

2k1̂ · k2 = 〈2|6k1̂|2] = 〈1 2〉 {[2 1] + z[2 4]}
2k4̂ · k3 = 〈3|6k4̂|3] = {〈4 3〉 − z〈1 3〉}[3 4]}
2k1̂ · k4̂ = 2k1 · k4 = 〈1 4〉[4 1] (3.47)

Now consider our 4 gluon result, Eq. (3.44)

A(1−, 2−, 3+, 4+) = −i 〈1 2〉4
〈1 2〉〈2 3〉〈3 4〉〈4 1〉 (3.48)
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but with the shifted momenta,

A(z) ≡ A(1̂−, 2−, 3+, 4̂+) = −i 〈1̂ 2〉4

〈1̂ 2〉〈2 3〉〈3 4̂〉〈4̂ 1̂〉
(3.49)

But from Eq. (3.47) we have that

〈1̂ 2〉 = 〈1 2〉, 〈1̂ 4̂〉 = 〈1 4〉, 〈3 4̂〉 = 〈3 4〉 − z〈3 1〉 (3.50)

and any shift in the [i j] are irrelevant since our formula only depends on 〈i j〉. Thus we
find

A(z) = −i 〈1 2〉4
〈1 2〉〈2 3〉(〈3 4〉 − z〈3 1〉)〈4 1〉 (3.51)

Now if we divide this function A(z) by z we get two poles, at z = 0 and at z =
〈3 4〉/〈3 1〉. The residue at z = 0 corresponds to the original unshifted amplitude. The
other residue corresponds to the case where an intermediate propagator is on shell, be-
cause we have that (k3 + k4(z))

2 = 〈3 4̂〉[4̂ 3] = (〈3 4〉 − z〈3 1〉)[4 3] = 0. Thus if we take
contour integral

1

2πi

∮

C

dz

z
A(z) (3.52)

If the circle at infinity gives no contribution, we obtain

A(z = 0) = −
∑

poles

Res

[

A(z)

z

]

(3.53)

In this case we only have one pole (apart from the pole at z = 0), and the contributions of
the two residues are equal and opposite because the contour at infinity gives zero. Since
the second pole corresponds to the vanishing of an intermediate propagator, the full result
factorizes about this pole into the product of two three point amplitudes multiplied by a
scalar propagator.

We have thus managed to write the 4 point amplitude as a product of the two on-shell
three point momenta at complex shifted values

A(z = 0) = −A3(−k̂−34, 3+, 4̂+)

[

Res
−i

z〈3 4̂〉[4̂ 3]

]

A3(1̂
−, 2−, k̂+

34)

A(z = 0) = A3(−k̂−34, 3+, 4̂+)
−i

〈3 4〉[4 3]
A3(1̂

−, 2−, k̂+
34) (3.54)

Putting in explicit expressions for the three point amplitudes we obtain,

A(z = 0) =
[3 4]4

[3 4̂][4 k̂34][k̂34 3]

i

〈3 4〉[4 3]

−〈1 2〉4

〈1̂ 2〉〈2 k̂34〉〈k̂34 1̂〉

=
−[3 4]3〈1 2〉3

〈1|(k̂34)|3]〈2|(k̂34)|4]
−i

〈3 4〉[4 3]

= −i 〈1 2〉4
〈1 2〉〈2 3〉〈3 4〉〈4 1〉 (3.55)
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In performing this last step we have used the identities that

〈1|k̂34|3] = 〈1|(3 + 4)|3] = 〈1 4〉[4 3]

〈2|(k̂34)|4] = 〈2|(3 + 4)|4] = 〈2 3〉[3 4] (3.56)

which are evident from the shifts Eq. (3.46) which do not change λ1 or λ̃4. We have thus
recovered our original MHV amplitude, but we have shown that is can be calculated as a
product of three point amplitudes with shifted external momenta, connected by a scalar
propagator. This illustrates the essence of the BCFW on-shell recursion relations.

The result for the n-point MHV amplitude can be derived using BCFW recursion.

M(1−, 2−, 3+ . . . , (n− 1)+, n+) = −i 〈1 2〉2
〈1 2〉〈2 3〉 . . . 〈n− 1n〉)〈n 1〉 (3.57)

4 One loop diagrams: the traditional approach

4.1 Scalar Integrals

Id
1 (m2

1) =
µ4−d

iπ
d
2 rΓ

∫

ddl
1

(l2 −m2
1 + iε)

,

Id
2 (p2

1;m
2
1,m

2
2) =

µ4−d

iπ
d
2 rΓ

∫

ddl
1

(l2 −m2
1 + iε)((l + q1)2 −m2

2 + iε)
,

Id
3 (p2

1, p
2
2, p

2
3;m

2
1,m

2
2,m

2
3) =

µ4−d

iπ
d
2 rΓ

×
∫

ddl
1

(l2 −m2
1 + iε)((l + q1)2 −m2

2 + iε)((l + q2)2 −m2
3 + iε)

,

Id
4 (p2

1, p
2
2, p

2
3, p

2
4; s12, s23;m

2
1,m

2
2,m

2
3,m

2
4) =

µ4−d

iπ
d
2 rΓ

×
∫

ddl
1

(l2 −m2
1 + iε)((l + q1)2 −m2

2 + iε)((l + q2)2 −m2
3 + iε)((l + q3)2 −m2

4 + iε)
,

(4.1)

where qn ≡
∑n

i=1 pi and q0 = 0 and sij = (pi + pj)
2. For the purposes of this paper we

take the masses in the propagators to be real. Near four dimensions we use d = 4 − 2ǫ.
(For clarity the small imaginary part which fixes the analytic continuations is specified
by +i ε). µ is a scale introduced so that the integrals preserve their natural dimensions,
despite excursions away from d = 4. We have removed the overall constant which occurs
in d-dimensional integrals

rΓ ≡
Γ2(1− ǫ)Γ(1 + ǫ)

Γ(1− 2ǫ)
=

1

Γ(1− ǫ) +O(ǫ3) = 1− ǫγ + ǫ2
[γ2

2
− π2

12

]

+O(ǫ3) . (4.2)
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Feynman parameter identities are also useful; we have

1

Aα Bβ . . . Fφ
=

Γ(α+ β + . . . φ)

Γ(α)Γ(β) . . . Γ(φ)

×
∫ 1

0
da1 da2 . . . dan δ(1 − a1 − a2 . . .− an)

× aα−1
1 aβ−1

2 . . . aφ−1
n

(Aa1 +Ba2 + . . .+ Fan)α+β+...+φ
(4.3)

We shall process this integral using the fundamental formula for one-loop integrals
given here,

1

iπ
d
2

∫

ddk
(−k2)r

[

− k2 + C − iε
]m =

[C − iε]2+r−m−ǫ Γ(r + d/2)

Γ(d/2)

Γ(m− r − 2 + ǫ)

Γ(m)
. (4.4)

After Feynman parametrization and integration over dDl, we have for the triangle
and box integrals

ID
3 (p2

1, p
2
2, p

2
3;m

2
1,m

2
2,m

2
3) = −µ

2ǫΓ(1 + ǫ)

rΓ

3
∏

i=1

∫ 1

0
dak

δ(1 −∑k ak)
[

∑

i,j aiajYij − iε
]1+ǫ , (4.5)

ID
4 (p2

1, p
2
2, p

2
3, p

2
4; s12, s23;m

2
1,m

2
2,m

2
3,m

2
4) =

µ2ǫΓ(2 + ǫ)

rΓ

4
∏

i=1

∫ 1

0
dak

δ(1 −∑k ak)
[

∑

i,j aiajYij − iε
]2+ǫ ,

(4.6)

where Y is the so-called modified Cayley matrix

Yij ≡
1

2

[

m2
i +m2

j − (qi−1 − qj−1)
2
]

. (4.7)

4.1.1 Dimensional Regularisation

In the intermediate stages of the calculation we must introduce some regularisation pro-
cedure to control these divergences. The most effective regulator is the method of di-
mensional regularisation which continues the dimension of space-time to d = 4 − 2ǫ
dimensions [5]. This method of regularisation has the advantage that the Ward Identities
of the theory are preserved at all stages of the calculation. Integrals over loop momenta
are performed in d dimensions with the help of the following formula,

∫

ddk

(2π)d
(−k2)r

[

− k2 + C − iε
]m =

i(4π)ǫ

16π2
[C − iε]2+r−m−ǫ Γ(r + d/2)

Γ(d/2)

Γ(m− r − 2 + ǫ)

Γ(m)
. (4.8)
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Figure 4.1: Wick rotation in the complex k0 plane

To demonstrate Eq. (4.8), we first perform a Wick rotation of the k0 contour anti-
clockwise. This is dictated by the iε prescription, since for real C the poles coming from
the denominator of Eq. (4.8) lie in the second and fourth quadrant of the k0 complex
plane as shown in Fig. 4.1. Thus by anti-clockwise rotation we encounter no poles. After
rotation by an angle π/2, the k0 integral runs along the imaginary axis in the k0 plane,
(−i∞ < k0 < i∞). In order to deal only with real quantities we make the substitution

k0 = iκd, kj = κj for all j 6= 0 and introduce |κ| =
√

κ2
1 + κ2

2 . . .+ κ2
d. We obtain a

d-dimensional Euclidean integral which may be written as,

∫

ddκ f(κ2) =

∫

d|κ| f(κ2) |κ|d−1 sind−2 θd−1 sind−3 θd−2 . . .

× sin θ2 dθd−1dθd−2 . . . dθ2dθ1. (4.9)

This formula is best proved by induction. The range of the angular integrals is 0 ≤ θi ≤ π
except for 0 ≤ θ1 ≤ 2π. The angular integrations, which only give an overall factor, can
be performed using

∫ π

0
dθ sind θ =

√
π

Γ
(

(d+1)
2

)

Γ
(

(d+2)
2

) . (4.10)

We therefore find that the left hand side of Eq. (4.8) can be written as,

2i

(4π)d/2Γ
(

d/2
)

∫ ∞

0
d|κ| |κ|

d+2r−1

[

κ2 + C
]m . (4.11)

This last integral can be reduced to a Beta function, (see Table 4.1)

∫ ∞

0
dx

xs

[

x2 + C
]m =

Γ
( (s+1)

2

)

2

Γ
(

m− s/2− 1/2
)

Γ
(

m
) Cs/2+1/2−m (4.12)

which demonstrates Eq. (4.8).
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Γ(z) =
∫∞
0

dt e−ttz−1

zΓ(z) = Γ(z + 1)

Γ(2z) = 22z−1√
π

Γ(z)Γ(z + 1
2
)

Γ(n + 1) = n! for n a positive integer

Γ(1) = 1, Γ(1
2
) =
√

π

Γ ′(1) = −γE , γE ≈ 0.577215

Γ ′′(1) = γ2
E + π2

6

B(a, b) =
∫ 1

0
dx xa−1(1− x)b−1

B(a, b) =
∫∞
0

dt ta−1

(1+t)a+b for Re a, b > 0

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Table 4.1: Useful properties of the Γ and related functions
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4.1.2 Landau conditions

The necessary conditions for eqs. (4.5,4.6) to contain a singularity are due to Landau [6, 7].
If we introduce the bilinear form d derived from the modified Cayley matrix, cf. Eq.(4.6)

d =
∑

i,j

aiajYij , (4.13)

eqs. (4.5, 4.6) contain singularities if d = 0 and one of the following conditions is satisfied
for all values of j

either aj = 0 or
∂d

∂aj
= 0 . (4.14)

Since d is a homegeneous function of the ai of degree two, we have that

ai
∂d

∂aj
= 2d (4.15)

So the conditions in Eq. (4.14) also imply that d = 0.

4.1.3 Soft and collinear divergences

The class of solution, which is of interest here, is the case where the external virtualities
and internal masses have fixed values and the Landau conditions have solutions for ar-
bitrary values of the other external invariants, sij. Only these solutions will lead to soft
and collinear divergences which are relevant for next-to-leading order calculations.

Figure 4.2: Examples of triangle diagrams with divergences.

As an example we consider the triangle shown in Fig. (4.2a) which contains a soft
singularity. In this case the denominator is given by

D =
∑

i,j

aiajYij = (m2
2 +m2

3 − p2
2)a2a3 +m2

2a
2
2 +m2

3a
2
3 . (4.16)

This expression satisfies the Landau conditions for a2 = a3 = 0 and a1 arbitrary. A
second example is the triangle shown in Fig. (4.2b) which contains a collinear singularity.
In this case the denominator reads

D =
∑

i,j

aiajYij = (m2
3 − p2

2)a2a3 + (m2
3 − p2

3)a1a3 +m2
3a

2
3 , (4.17)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ǫ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ǫ

s12s23

×
{

2

ǫ2

(

(−s12)−ǫ + (−s23−)−ǫ
)

− ln2
(−s12
−s23

)

− π2

}

+O(ǫ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ǫ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l+ p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformationG = ODOT ,D = diag{λ+, λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OTC, R′ = OTR, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2)

−1 + κδ.p
p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµ

l2(l + p)2(l + q)2
=
(

p′µ q′µ
)

(

C ′
1

C ′
2

)

=
(

p′µ q′µ
)

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

The momentum corresponding to the singular eigenvalue is

q′µ = −δµ +
δ · pκ(1 + κ)

p2(1 + κ2)
= O(δ) (4.31)

R′
2 ∼ κ[2l · p]− [2l · q] ∼ O(δ) (4.32)

As expected the result for the tensor integral is finite in the limit δ → 0, but the vanishing
of R′

2 is not manifest; it is realized as a property of a combination of scalar integrals. One
approach would be to work in the primed basis, which would thus differ for every phase
space point. (Numerical problems halved?)

4.3 Rational terms by PV reduction

The rational part is related to the ultraviolet behavior of the theory; the naive expectation
is that the better the UV behavior, the “smaller” the rational part. When the integral
is free from the rational part, it is said to be “cut-constructible”. A natural expectation
is that the rational part is absent in UV-finite integrals. As we explain below, this
expectation turns out to be wrong; the correct result is that a Feynman N -point integral
is cut constructible, provided that tensor rank, r, of the integral satisfies the following
condition [11]

r < max{(N − 1), 2} . (4.33)

The condition is illustrated in Fig. 4.3. If this condition is violated the integral will
contain rational parts. Explicitly, Eq. (4.33) implies that the UV finite rank-two four-
point function is cut-constructible, whereas the UV-finite rank-three four-point function
is not.

In this section we give an proof of the condition that an integral has to satisfy for being
cut-constructible, Eq. (4.33). This proof is based on the Passarino-Veltman reduction.
We will proceed case-by-case for the two-, three- and four-point integrals which occur in
a renormalizable theory. The extension to higher point integrals will be performed at the
end. We first note that the Passarino-Veltman decomposition described in Section ??

and ??, yields the coefficients of the scalar integrals D0, C0, B0, A0 for arbitrary values of
the number of dimensions. Since the rational terms are related to UV singularities they
will show up at the end of the reduction as terms of the form

Rational terms ∼ ǫB0(p,m1,m2) , (4.34)

because B0 is the only UV divergent scalar integral. Such terms can only arise if the
reduction involves the dimensional parameter D. This means that integrals of rank r less
than two will always be cut-constructible, since their reduction coefficients are always D
independent. Ultraviolet divergent integrals of rank two or greater (e.g.Diiii, Ciii, Cii, Bii)
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Figure 4.3: Diagram showing tensor N -point integrals of rank r. Integrals shown by bullets

(red) are cut-constructible, integrals denoted by stars (blue) contain rational terms. The UV

finite integrals lie beneath the solid (green) line, whereas the cut constructible integrals lie

beneath the dashed (purple) line.

will on the contrary give rise to rational parts. Thus it only remains to discuss the
ultraviolet finite integrals Diii,Dii. The integral Diii contains a UV-divergent integrals
of rank greater than two in its reduction paths, Diii → Cii, see Table ?? and hence will
have a rational part. This leaves the special case Dii, a finite integral which can contain
a UV divergent integral in its reduction path, namely B0. However since the starting
integral is UV finite, the UV poles all cancel. Moreover the coefficients of B0 are all
ǫ-independent, since the only D dependence enters through D00, which does not contain
B0 in its reduction path. Hence the rank-two, four point integral is cut constructible.

In a renormalizable theory the higher point functions are not UV divergent. Moreover
the most UV singular terms in their reduction paths reduce both N and r by one unit.
Therefore the reduction paths of these UV finite integrals can only generate a rational
part if the rank of the integral has r ≥ N − 1. This observation extends Eq. (4.33) to N
greater than 4.

4.4 The importance of the van Neerven - Vermaseren basis

The material in this section is taken from a forthcoming review, [12]. On-shell scatter-
ing amplitudes in gauge field theories are gauge-invariant. A practical version of this
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statement is that an on-shell scattering amplitude evaluated with the polarization vector
of a particular gauge boson substituted by the momentum of that gauge boson must
vanish, when all the other gauge bosons have physical polarizations. This provides both
a constraint on the form of the amplitude and a powerful check of the computation.
However, it is well-known that in complicated cases that involve high-point scattering
amplitudes, demonstrating this cancellation analytically is non-trivial. One reason why
such complications arise is the dimensionality of space-time since it implies that for high-
point amplitudes external momenta are not linearly independent. In four dimensions, the
“dimensionality constraint” can be stated in the form of the Schouten identity

qαǫβγδλ = qβǫαγδλ + qγǫβαδλ + qδǫβγαλ + qλǫβγδα, (4.35)

which follows from the vanishing of the totally antisymmetric rank-five tensor in four
dimensions.

Since these constraints are not implemented in the Passarino-Veltman procedure, it is
usually not easy to demonstrate gauge cancellations in that framework. Vermaseren and
Oldenborgh pointed out that constraints related to the dimensionality of space-time can
be conveniently implemented if the loop momentum is written as a linear combination of
appropriate basis vectors [13]. We call this set of vectors the van Neerven - Vermaseren
basis [14]. In addition to making the gauge-independence of one-loop amplitude more
transparent, this basis turns out to be very convenient for an easy proof of Eq.(??) which
states that any one-loop integral can be written as a linear combination of four-, three-
, two- and one-point scalar functions. Moreover, the van Neerven - Vermaseren basis
proved to be very fruitful for understanding a number of important results that concern
the reduction of tensor integrals and the applicability of the generalized unitarity. Below
we summarize some of the results obtained using the van Neerven - Vermaseren basis.

First, in four dimensions, simple algorithms were derived for the reduction of tensor
integrals to the linear combination of box, triangle, bubble and tadpole scalar integrals.
The number of terms generated in this process has been reduced in comparison with
the standard Passarino-Veltman reduction procedure. Second, using the van Neerven -
Vermaseren basis, it is straightforward to show that in four dimensions the scalar five-
point Feynman integral is given by a linear combination of scalar box integrals [15, 14].
Third, using the van Neerven - Vermaseren basis it is easy to understand that in four
dimensions the integrand of any one-loop Feynman diagram in any renormalizable theory
is given by a linear combination of quadruple, triple-, double- and single-pole rational
functions with the numerator of a very restrictive form. Finally, employing the van Neer-
ven - Vermaseren decomposition, it is straightforward to find the loop momenta that
satisfy quadruple, triple-, double-, and single-cut on-shell conditions. These features of
the van Neerven - Vermaseren basis make it important for the construction of the tech-
nique of generalized D-dimensional unitarity. Because of that the following subsections
are devoted to its detailed explanation.

4.5 Physical space of inflow momenta and transverse space

We consider aN -particle scattering amplitude in a renormalizable quantum field theory in
D-dimensional space-time. Such an amplitude can be computed from relevant Feynman

31



kR

k1

k2

k3
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l + q1

l + q2

l + q3

Figure 4.4: Generic diagram

diagrams, each given by an integral over the loop momentum l of an integrand function.
We study one of these Feynman diagrams and imagine that it has R loop-momentum-
dependent propagators. The integrand IN is a rational function of the loop momentum
l given by the product of R l-dependent scalar inverse propagators di and a polynomial
in l of rank rl ≤ R.

IN (p1, p2, . . . , pN |l) =
NI(p1, p2, . . . , pN ; l)

d1d2 · · · dR
. (4.36)

The amplitude has a set of R outflow momenta, k1, . . . , kR. The outflow momenta are
either equal to the external momenta pi, or are given by their linear combinations

di = (l + qi)
2 −m2

i , ki = qi − qi−1, ki =

N
∑

j=1

αijpj ,

R
∑

i=1

ki = 0, (4.37)

where αij are diagram-specific numbers. We call the vector space spanned by the outflow
momenta the physical space. We emphasize that the dimensionality DP of the physical
space changes from diagram to diagram. Accounting for the momentum conservation
R
∑

i=1
ki = 0, we obtain

DP = min(D,R− 1), (4.38)

which implies that for R < D, the dimensionality of the physical space is smaller that the
dimensionality of space-time. Authors of Ref. [14] exploit this observation by defining an
orthonormal basis – the van Neerven - Vermaseren basis – that naturally describes the
D-dimensional space split into a DP -dimensional physical space and a DT -dimensional
transverse space. Dimensionalities of various spaces satisfy obvious constraints

D = DP +DT , DP = min (D,R− 1), DT = max (0,D −R+ 1). (4.39)
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If R > D, the transverse space is zero-dimensional.
To define the van Neerven - Vermaseren basis we introduce the generalized Kronecker

symbol [13] 1

δµ1µ2···µR
ν1ν2···νR

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

δµ1
ν1 δµ1

ν2 . . . δµ1
νR

δµ2
ν1 δµ2

ν2 . . . δµ2
νR

...
...

...
δµR
ν1 δµR

ν2 . . . δµR
νR

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.40)

the compact notation
δkµ2···µR
ν1q···νR

≡ δµ1µ2···µR
ν1ν2···νR

kµ1q
ν2 , (4.41)

and the R-particle Gram determinant

∆(k1, k2, · · · , kR) = δk1k2···kR

k1k2···kR
. (4.42)

Note that for R ≥ D + 1 the generalized Kronecker delta vanishes. For the special
case D = R the Kronecker delta factorizes into the product of two Levi-Civita tensors
δµ1µ2···µR
ν1ν2···νR

= εµ1µ2···µRεν1ν2···νR
. If the number of outflow momenta is small, we can write

the Kronecker deltas explicitly

δk1k2
q1µ = k1 · q1 δk2

µ − k1µδ
k2
q1
,= k1 · q1 k2µ − k2 · q1 k1µ,

δk1k2k3
q1q2q3

= k1 · q1 δk2k3
q2q3
− k1 · q2 δk2k3

q1q3
+ k1 · q3 δk2k3

q1q2

= k1 · q1 (k2 · q2 k3 · q3 − k2 · q3 k3 · q2)
− k1 · q2 (k2 · q1 k3 · q3 − k2 · q3 k3 · q1)
+ k1 · q3 (k2 · q1 k3 · q2 − k2 · q2 k3 · q1).

(4.43)

We can use the Kronecker δ-symbol to construct the van Neerven - Vermaseren basis
for the physical space Dp. We define the basis vectors

vµ
i (k1, . . . , kDP

) ≡
δ
k1...ki−1µki+1...kDP

k1...ki−1kiki+1...kDP

∆(k1, . . . , kDP
)

, (4.44)

with the properties vi · kj = δij for j ≤ DP . When R ≤ D we also need to define the
projection operator onto the transverse space

wµ
ν(k1, . . . , kR−1) ≡

δ
k1···kR−1ν
k1...kR−1µ

∆(k1, . . . , kR−1)
, (4.45)

1 This notation is closely related to the asymmetric Gram determinant notation of ref. [16],

G









k1 · · · kR

q1 · · · qR









= δk1k2···kR

q1q2···qR
.
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with the properties wµ
µ = DT = D + 1 − R, kµ

i wµν = 0 and wµ
αw

αν = wµν . We note
that wµν is the metric tensor of the transverse subspace, amenable to decomposition

wµν =

D+1−R
∑

i=1

nµ
i n

ν
i . (4.46)

The D + 1−R orthonormal basis vectors of the transverse space ni have the properties
ni · nj = δij , ni · kj = ni · vj = 0. The full metric tensor decomposition in the van
Neerven-Vermaseren basis is given by

gµν =

DP
∑

i=1

kµ
i v

ν
i + wµν =

DP
∑

i=1

kµ
i v

ν
i +

DT
∑

i=1

nµ
i n

ν
i . (4.47)

Note that the right hand side of this equation is, actually, a symmetric tensor since, by
explicitly writing the generalized Kronecker delta-function using ki vectors, one can show
that the following equation holds

DP
∑

i=1

kµ
i v

ν
i =

DP
∑

i=1

kν
i v

µ
i . (4.48)

For the case D = R, the only basis vector of the one-dimensional transverse space is
proportional to the Levi-Civita tensor. For the cases R < D we can explicitly construct
the basis vectors that fulfill all the requirements. As an example, if D = 4 and R = 4,
we get

vµ
1 (k1, k2, k3) =

δµk2k3

k1k2k3

∆(k1, k2, k3)
, vµ

2 (k1, k2, k3) =
δk1µk3

k1k2k3

∆(k1, k2, k3)
,

vµ
3 (k1, k2, k3) =

δk1k2µ
k1k2k3

∆(k1, k2, k3)
;

wµ
ν(k1, k2, k3) =

δk1k2k3ν
k1k2k3µ

∆(k1, k2, k3)
= n1µn1

ν =
εk1k2k3µε

k1k2k3ν

∆(k1, k2, k3)
.

(4.49)

In applications of the van Neerven-Vermaseren basis, it is often needed to write the
loop momentum l as a linear combination of the basis vectors for a particular graph with
the denominator factors d1, d2, ...dR. The denominators are given by di = (l + qi)

2 −m2
i

and the outflow momenta read ki = qi − qi−1. By contracting in the loop momentum
with the metric tensor given in Eq. (4.47) we obtain the loop momentum decomposition
in the van Neerven - Vermaseren basis

lµ =

DP
∑

i=1

(l · ki) v
ν
i +

DT
∑

i=1

(l · ni) n
ν
i . (4.50)

Using the identity

l · ki =
1

2

[

di − di−1 −
(

q2i −m2
i

)

+
(

q2i−1 −m2
i−1

)]

, (4.51)
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we find

lµ = V µ
R +

1

2

DP
∑

i=1

(di − di−1) v
µ
i +

DT
∑

i=1

(l · ni)n
µ
i , (4.52)

where d0 = dR, m0 = mR and

V µ
R = −1

2

DP
∑

i=1

(

(q2i −m2
i )− (q2i−1 −m2

i−1)
)

vµ
i . (4.53)

As an illustration of this procedure, we explicitely give the loop-momentum decompo-
sition in two cases. The first example concerns the five-point function in four dimensions,
so that D = 4 and R = 5. We derive

lµ = V µ
5 +

1

2
(d1 − d5) v

µ
1 +

1

2
(d2 − d1) v

µ
2

+
1

2
(d3 − d2) v

µ
3 +

1

2
(d4 − d3) v

µ
4 ,

V µ
5 = −1

2
(q21 − q25 −m2

1 +m2
5) v

µ
1 −

1

2
(q22 − q21 −m2

2 +m2
1) v

µ
2

− 1

2
(q23 − q22 −m2

3 +m2
2) v

µ
3 −

1

2
(q24 − q23 −m2

4 +m2
3) v

µ
4 .

(4.54)

Similarly, for a three-point function in four dimensions D = 4 and R = 3. We obtain

lµ = V µ
3 +

1

2
(d1 − d3) v

µ
1 +

1

2
(d2 − d1) v

µ
2 + (l · n1)n

µ
1 + (l · n2)n

µ
2 ,

V µ
3 = −1

2
(q21 − q23 −m2

1 +m2
3) v

µ
1 −

1

2
(q22 − q21 −m2

2 +m2
1) v

µ
2 .

(4.55)

We note that if the number of ourflow momenta R exceeds the dimensionality of space-
time D, the decomposition of the loop momentum into the van Neerven - Vermaseren
basis may be used to prove that the D + m point functions m ≥ 1 can all be written
as linear combinations of the D-point functions. We will show an example of this in the
next Section. Finally, we emphasize that the van Neerven - Vermaseren basis allows us to
include the unitarity constraints without resorting to spinor-helicity formalism, which is
often used in analytic calculations. By avoiding the spinor-helicity formalism, the method
can be used in computations with massive internal particles, where the mass can be either
real or complex-valued.

5 OPP and Numerical Unitarity

Analytic calculations in four dimensions require considerable algebraic effort. I have
therefore chosen to present the basic ideas using two examples in two dimensions where
the algebraic burden is lighter.

35



5.1 Reduction of a two-dimensional triangle to a sum of

bubbles

In this section I will show that a scalar triangle in two dimensions, can be reduced to
a sum of bubbles[12]. The demonstration is essentially identical to the demonstration
that a four-dimensional pentagon can be reduced to a sum of five boxes. So results such
a these lie at the basis of the general OPP expansion Eq. (??) considered in the next
section. We define

vµ
1 =

δµq2
q1q2

∆2
,

vµ
2 =

δq1µ
q1q2

∆2
, (5.1)

where ∆2 = δq1q2
q1q2 is the two-dimensional Gram determinant, so that vi.qj = δij . We want

to examine a scalar triangle in 2 dimensions

I3 =

∫

d2l
1

(l2 −m2
0)((l + q1)2 −m2

1)((l + q2)2 −m2
2)

=

∫

d2l
1

d0d1d2
(5.2)

Now expansion for l is
lµ = l · q1 vµ

1 + l · q2 vµ
2 . (5.3)

Hence we have that,
l2 = l · q1 v1 · l + l · q2 v2 · l , (5.4)

so the two dimensional metric tensor can be written as,

gµν
(2) = vµ

1 q
ν
1 + vµ

2 q
ν
2 . (5.5)

Defining
r1 = q21 +m2

0 −m2
1, r2 = q22 +m2

0 −m2
2 , (5.6)

we can write Eq. (5.4) in terms of the denominators of Eq. (5.2)

2d0 + 2m2
0 − l · v1(d1 − d0 − r1)− l · v2(d2 − d0 − r2) = 0 . (5.7)

Dividing by d0d1d2 we see that terms with d2 and d1 drop out upon integration. So we
get,

2d0 + 2m2
0 + d0(l · v1 + l · v2) + r1l · v1 + r2l · v2

d0d1d2
= 0 . (5.8)

Now consider the term where d0 cancels. We may define a shifted momentum l′ = l+ q1.
Hence

l · v1 + l · v2 = l′ · v1 − q1 · v1 + l′ · v2 − q1 · v2 = l′ · v1 − 1 + l′ · v2 (5.9)

The term linear in l′ vanishes after integration, (q2 − q1) · (v1 + v2), so we get,

d0 + 2m2
0 + r1l · v1 + r2l · v2
d0d1d2

=
d0 + 2m2

0 + l · w
d0d1d2

= 0 , (5.10)
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where w = r1v1 + r2v2. We now replace the metric tensor in Eq.(5.10) using Eq. (5.5)
and get that

d0 + 2m2
0 + l · q1 v1 · w + l · q2 v2 · w

d0d1d2
= 0 . (5.11)

Finally
d0 + 2m2

0 + 1
2 (d1 − d0 − r1) v1 · w + 1

2(d2 − d0 − r2) v2 · w
d0d1d2

= 0 , (5.12)

which proves the relation. Collecting terms we get

d0(2− (v1 · w + v2 · w)) + (4m2
0 − w2) + d1 v1 · w + d2 v2 · w

d0d1d2
= 0 . (5.13)

This demonstrates that the scalar triangle can we written as a sum of bubbles. The
explicit solution is,

∫

d2l
1

d0d1d2
=

1

4m2
0 − w2

[

(v1 · w + v2 · w − 2) I12 − v1 · w I02 − v2 · w I01

]

(5.14)

where

Iij =

∫

d2l
1

didj
(5.15)

5.1.1 Reduction of triangle at the integrand level

Let us further process Eq. (5.7) but without performing the integral. We have that

2d0 + 2m2
0 − l · v1(d1 − d0)− l · v2(d2 − d0) + l · w = 0 , (5.16)

but we can write

l · w = l · q1 v1 · w + l · q2 v2 · w
=

1

2
[d1 − d0 − r1] v1 · w +

1

2
[d2 − d0 − r2] v2 · w

=
1

2
[d1 − d0] v1 · w +

1

2
[d2 − d0] v2 · w −

1

2
w2 . (5.17)

Collecting terms again we get (at integrand level!),

1

d0d1d2
=

1

4m2
0 − w2

[

(v1 · w + v2 · w − 4− 2l · v1 − 2l · v2)
1

d1d2

− (v1 · w − 2l · v1)
1

d0d2
− (v2 · w − 2l · v2)

1

d0d1

]

. (5.18)

This expression essentially proves the form of the integrand needed for the OPP reduction.
In two dimensions we only have to include bubble integrals and the most general form of
the integrand is

N
(l2 −m2

0)((l + q1)2 −m2
1)

=
b0 + b1(nq1 · l)

d0d1
(5.19)
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where we have given the example of the bubble with the first two denominators, d0, d1.
Since we are dealing with a scalar triangle N is really just the denominator, d2.

N =
1

d2
. (5.20)

We shall chose to expand the momentum in terms of v1 and v2. The two constraints
d0 = d1 = 0 fix the momentum lc to be

lµc = −1

2
r1v

µ
1 + βvµ

2 (5.21)

where β satisfies the equation coming from d0(lc) = 0

β2v2
2 − r1βv1 · v2 + v2

1r
2
1/4−m2

0 = 0; (5.22)

leading to

β± =
r1v1 · v2 ±

√

r21(v1 · v2)2 − r21v2
1v

2
2 + 4m2

0v
2
2

2v2
2

(5.23)

so that

β+ + β− =
r1v1 · v2
v2
2

4β+β− =
1

v2
2

(r21v
2
1 − 4m2

0) (5.24)

Therefore we obtain,
d2(lc) = 2lc · q2 + r2 = r2 + 2β± (5.25)

Therefore we have that

1

2

[

1

d2(l
+
c )

+
1

d2(l
−
c )

]

=
r2 + β+ + β−

r22 + 2r2(β+ + β−) + 4β+β−
=

v2 · w
w2 − 4m2

0

1

2

[

1

d2(l
+
c )
− 1

d2(l
−
c )

]

=
β− − β+

r22 + 2r2(β+ + β−) + 4β+β−
= − 2lc.v2

w2 − 4m2
0

(5.26)

Thus our final results for b0 and b1 are,

b0 =
1

2

[

1

(l+c + q2)2 −m2
2)

+
1

(l−c + q2)2 −m2
2)

]

b1 =
1

2

[

1

(l+c + q2)2 −m2
2)
− 1

(l−c + q2)2 −m2
2)

]

. (5.27)

are thus in agreement with Eq. (5.18).
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5.2 Reduction of a rank-two two-point function

Our next two-dimensional example concerns the reduction of a rank-two two-point func-
tion using van Neerven - Vermaseren basis. Consider an integrand given by

I(k,m1,m2) =
(n̂ · l)2
d1d2

, (5.28)

where d1 = l2 −m2
1, d2 = (l + k)2 −m2

2, n̂ · k = 0, k2 6= 0 and n̂2 = 1. Because of the
projection onto n̂, the momentum l in the numerator in Eq. (5.28) lies in the transverse
space. We want to express this integral in terms of scalar integrals.

Note that in contrast to the three-point function considered in the preceeding Section,
the rank-two two-point function in two dimensions has an ultra-viloet divergence. We
regularize this divergence by continuing the loop momentum to d = 2 − 2ǫ dimensions
and begin by constructing the van Neerven - Vermaseren basis. As the basis vector of
the physical space, we take

nµ =
kµ

√
k2
, n2 = 1. (5.29)

We choose n̂ to be the basis vector of the transverse space, which is allowed since n and
n̂ are orthogonal, n · n̂ = 0. As the consequence of the completeness relation, the two
vectors satisfy

nµnν + n̂µn̂ν = gµν
(2), (5.30)

where gµν
(2) is the two-dimensional metric tensor. Contracting this equation with the loop

momentum, we obtain

(n̂ · l)2 = l2(2) − (n · l)2 = l2(2) −
(l · k)2
k2

. (5.31)

Because l is a d-dimensional vector, we can decompose it as

lµ = (l · n)nµ + (l · n̂)n̂µ + nµ
ǫ (l · nǫ), (5.32)

where nǫ is the unit vector that parametrizes the (d − 2)-dimensional vector space. It
follows that the square of the d-dimensional loop momentum can be written as

l2 = l2(2) + (nǫ · l)2 = l2(2) + µ2, (5.33)

where µ2 = (nǫ · l)2 is introduced. To proceed further, we express various scalar products
through inverse Feynman propagators d1,2

l2(2) = d1 +m2
1 − µ2, 2l · k = d2 − d1 − r21, (5.34)

and use Eqs. (5.31,5.33) to obtain

(n̂ · l)2
d1d2

= −(λ2 + µ2)

d1d2
+

1

4k2

[

r21 − 2l · k
d1

+
r22 + 2l · k + 2k2

d2

]

. (5.35)
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In Eqs. (5.34,5.35), we use the following short-hand notations

r21 = k2 +m2
1 −m2

2, r22 = k2 +m2
2 −m2

1,

λ2 =
k4 − 2k2(m2

1 +m2
2) + (m2

1 −m2
2)

2

4k2
.

(5.36)

Even if we did not know the result displayed in Eq. (5.35), we could still argue on
general grounds that the integrand can be written as

(n̂ · l)2
d1d2

=
b0 + b1(n̂ · l) + b2(nǫ · l)2

d1d2
+
a1,0 + a1,1(n · l) + a1,2(n̂ · l)

d1

+
a2,0 + a2,1(n · l) + a2,2(n̂ · l)

d2
.

(5.37)

We will explain in later where this parametrization comes from. Here, we compare terms
in Eq. (5.35) and Eq. (5.37) and obtain

b0 = −λ2, b1 = 0, b2 = −1,

a1,0 =
r21
4k2

, a1,1 = − 1

2
√
k2
, a1,2 = 0,

a2,0 =
r22
4k2

+
1

2
, a2,1 =

1

2
√
k2
, a2,2 = 0.

(5.38)

It is instructive to rederive Eq. (5.38) using an alternative procedure. This procedure
is important because it generalizes to four-dimensions, without modification, and because
it shows how the reduction techniques are connected to unitarity. We begin by multiplying
both sides of Eq. (5.37) by d1, d2 and obtain

(n̂ · l)2 =
[

b0 + b1(n̂ · l) + b2(nǫ · l)2
]

+ [a1,0 + a1,1(n · l) + a1,2(n̂ · l)] d2

+ [a2,0 + a2,1(n · l) + a2,2(n̂ · l)] d1.
(5.39)

We would like to use Eq. (5.39) to find all the b- and a-coefficients. Since there are nine
unknowns, we can evaluate Eq. (5.39) for nine different values of the loop momentum
l, invert the nine-by-nine matrix and find the coefficients. While this procedure does,
indeed, provide a solution to the problem, it involves inverting a large matrix and is
therefore impractical. A better algorithm exploits the fact that, under special choices of
the loop momentum l in Eq. (5.39), the matrix to invert becomes block-diagonal.

To see how this works, we first describe a procedure to compute the b-coefficients
only. To project the right hand side of Eq. (5.39) onto b-coefficients, we choose the
loop momentum l to satisfy d1(l) = d2(l) = 0. For the moment, consider the loop
momentum l that satisfies those constraints and, simultaneously, has zero projection on
the d-dimensional space, nǫ · l = 0. We find that there are just two loop momenta l that
satisfy those constraints; they can be written as

l±c = αcn± iβcn̂, (5.40)

where

αc = − r21

2
√
k2
, βc = λ. (5.41)
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The parameters r1 and λ are shown in Eq. (5.36). We substitute these two solutions into
Eq. (5.39) and obtain two equations for the coefficients b0,1

b0 + b1n̂ · l+c = −λ2, b0 + b1n̂ · l−c = −λ2. (5.42)

It follows that b0 = −λ2 and b1 = 0, in agreement with Eq. (5.38).
To find b2 we proceed along similar lines but we require that the scalar product l · nǫ

does not vanish. Since the conditions d1 = 0, d2 = 0 are equivalent to 2l · k + r21 = 0,
l2 = m2

1, the loop momentum that satisfies those constraints is the same as in Eq. (5.40),
up to a change n̂→ nǫ,

l± = αcn± iβcnǫ. (5.43)

Substituting l± into Eq. (5.39) and using b0 = −λ2, b1 = 0, we obtain

0 = (1 + b2)λ
2, (5.44)

which implies that b2 = −1, in agreement with Eq. (5.38).
The next step is to identify the coefficients of the tadpoles in Eq. (5.39). We will

focus on a set a1,0, a1,1, a1,2. We can project Eq. (5.39) on these coefficients by choosing
the loop momentum for which d1 vanishes but d2 is different from zero. Note that no
l · nǫ terms are needed to find the a-coefficients. As the consequence, we can work with
the two-dimensional loop momentum

l1 = γ1n+ γ2n̂. (5.45)

The equation d1(l1) = 0 implies γ2
1 + γ2

2 = m2
1, so that γ1, γ2 lie on a circle of a radius

m1. Substituting l1 into Eq. (5.39), we find

γ2
2 = −λ2 + (2

√
k2γ1 + r21)(a1,0 + a1,1γ1 + a1,2γ2). (5.46)

To solve Eq. (5.46), we choose γ1 = 0, γ2 = ±m1 and obtain two equations

a1,0 ± a1,2m1 =
m2

1 + λ2

r21
=

r21
4k2

. (5.47)

Hence, it follows that a1,0 = r21/(4k
2) and a1,2 = 0, in agreement with Eq. (5.38). To find

a1,1, we choose γ2 = 0, γ1 = m1, solve Eq. (5.46) and obtain a1,1 = −(4k2)−1/2.
We can determine coefficients a2,0, a2,1, a2,2 in the same manner, by choosing the loop

momentum that satisfies d2(l) = 0. The calculation is similar to the one performed above
and for this reason we do not present it here. We emphasize that the procedure that
we just explained implies that, for the reduction of one-loop integrals to a set of scalar
integrals, we need to know integrands at special values of the loop momenta, for which at
least one of the inverse Feynman propagators that contributes to a particular diagram,
vanishes. Since zeros of Feynman denominators correspond to situations when virtual
particles go on their mass shells, the connection between the reduction procedure and
the ideas of unitarity begins to emerge.

In this section, we generalize the two-dimensional reduction procedure described in
the previous section to D-dimensional space-time. We are ultimately interested in the
limit D → 4.
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5.3 Parametrization of the integrand

We begin with the observation that, in any renormalizable quantum field theory, the rank
of the one-loop tensor integrals that appear does not exceed the number of external lines.
Therefore, we will only be concerned with the reduction of one-loop integrals of restricted
rank, e.g. the rank-five or less for five-point functions, rank-four or less for four-point
functions and so on.

We would like to establish a simple parametrization of one-loop integrands, first in-
troduced by Ossola, Papadopoulos and Pittau [17]. It reads

IN =

∫

dDl

(2π)D
Num(l)
∏

i di(l)
=

∫

dDl

(2π)D
1

∏

i di(l)
×
{

∑

i1,i2,i3,i4,i5

ẽi1,i2,i3,i4,i5(l)
∏

j 6=[i1,i2,i3,i4,i5]

dj(l)

+
∑

i1,i2,i3,i4

d̃i1,i2,i3,i4(l)
∏

j 6=[i1,i2,i3,i4]

dj(l)

+
∑

i1,i2,i3

c̃i1,i2,i3(l)
∏

j 6=[i1,i2,i3]

dj(l)

+
∑

i1,i2

b̃i1,i2(l)
∏

j 6=[i1,i2]

dj(l) +
∑

i1

ãi1(l)
∏

j 6=i1

dj(l)

}

.

(5.48)

The index i runs over all possible inverse Feynman propagators di. Similarly, the index j
runs over all inverse Feynman propagators, except those explicitly excluded. The impor-
tant feature of this parametrization is that all inverse propagators di(l) on the right hand
side appear in the first power, i.e. there are no terms of the form d2

i (l) for any i. In the
spirit of the previous section, this allows us to project on different ẽ, d̃, c̃, b̃ and ã-functions,
by considering loop momenta that nullify different sets of inverse propagators.

We will discuss first the reduction of a rank-five five-point function; the general case
then easily follows. To this end, we consider di(l) = (l + qi)

2 −m2
i , i = 0, . . . , 4, q0 = 0

and assume that the numerator function reads

N(l) =

5
∏

i=1

ui · l, (5.49)

where ui are some external four-dimensional vectors.
As the first step in the reduction procedure, we find the reduction coefficients of the

five-point function, ẽ01234. To accomplish this, we construct the van Neerven-Vermaseren ba-
sis out of four vectors qi and decompose the loop momentum

lµ =

4
∑

i=1

(l · qi)vµ
i + (l · nǫ)n

µ
ǫ . (5.50)

The scalar products l · qi are expressed in terms of inverse Feynman propagators

l · qi =
1

2

(

di − d0 − (q2i −m2
i +m2

0)
)

. (5.51)
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Since u5 · nǫ = 0, we can rewrite Eq. (5.49) as

N(l) =

(

4
∏

i

ui · l
)

(u5 · l) =
1

2

4
∑

j=1

(u5 · vj)

(

4
∏

i

ui · l
)

(dj − d0)

− 1

2

4
∑

j=1

(u5 · vj)

(

4
∏

i

ui · l
)

(q2j −m2
j +m2

0).

(5.52)

Upon dividing the numerator function by the product of inverse Feynman propagators
d0d1d2d3d4, we find that the first term on the right-hand-side of Eq. (5.52), produces
a collection of rank-four four-point functions and the second term – a rank-four five-
point function. We now repeat the same procedure with the rank-four five-point function
and conclude that it can be expressed through a combination of rank-three four-point
functions and the rank-three five point function. Whenever, as a result of these manipu-
lations, the propagator d0 cancels, it is possible to shift the loop-momentum to bring the
integrand to the standard form. We can clearly continue this procedure until we are left
with a scalar five-point function and a collection of four-point functions of the ranks from
zero (scalar) to four (maximal). Hence, we have established that the function ẽ01234(l) in
Eq. (5.48) is l-independent

ẽ01234(l) = e0. (5.53)

In the course of the procedure described above, the highest rank integral left unreduced
is the rank-four four-point function. We now discuss how it can be reduced. For definite-
ness, we consider the four-point function with four propagators d0, d1, d2, d3, but our dis-
cussion can be applied to any other four-point function, by the appropriate re-definition
of the propagator momenta and masses. We construct van Neerven-Vermaseren basis
vectors out of the three momenta q1, q2, q3. The physical space in this case is three-
dimensional and the transverse space is one-dimensional. We parametrize the transverse
space by the unit vector n4.

The decomposition in terms of van Neerven-Vermaseren basis then reads

lµ =

3
∑

i=1

vµ
i (l · qi) + (l · n4)n

µ
4 + (l · nǫ)n

µ
ǫ . (5.54)

Using this parametrization we can write

N4(l) =

(

3
∏

i

ui · l
)

(u4 · l) =
1

2

3
∑

j=1

(u4 · vj)

(

3
∏

i

ui · l
)

(dj − d0)

− 1

2

3
∑

j=1

(u4 · vj)

(

3
∏

i

ui · l
)

(q2j −m2
j +m2

0) +

(

3
∏

i

ui · l
)

(lcdotn4)(u4 · n4).

(5.55)

The first two terms on the right-hand side are considered “reduced”, since they are
rank-three three-point and four-point functions. The last term, however, is a rank-four
four-point function, and so it does not appear that we gained anything. To demonstrate
that we, actually, did gain something, we take the last term in Eq. (5.55) and repeat the
reduction procedure described above. It is clear that a variety of terms will be produced,
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most of lower-point or lower-rank type, and the only term that we should consider as
“not-reduced” reads

(

3
∏

i

ui · l
)

(l · n4)→
(

2
∏

i

ui · l
)

(l · n4)
2. (5.56)

We simplify it by examining the square of the loop momentum l. Using the decomposition
in terms of van Neerven-Vermaseren basis, eq. (5.54) and the relations 2l · qi = (di− d0−
q2i +m2

i −m2
0) and l2 = d0 +m2

0, we find

(l · n4)
2 = −(l · nǫ)

2 + constant terms +O(d0, d1, d2, d3). (5.57)

Terms dubbed “constant” in the above formula contribute (after multiplication by (u1 ·
l)(u2 · l)) to rank-two four-point functions while terms that contain at least one inverse
Feynman propagator, contribute to three-point functions. The “not-reduced” part of the
rank-four four-point function therefore reads

4
∏

i

ui · l →
(

2
∏

i

ui · l
)

(l · n4)
2 →

(

2
∏

i

ui · l
)

(l · nǫ)
2. (5.58)

It is clear that if we repeat the reduction process, we express any tensor four-point function
integral (of rank not higher than four), through the following numerator function

d̃0123(l) = d̃0 + d̃1(l · n4) + d̃2(l · nǫ)
2 + d̃3(l · nǫ)

2(l · n4) + d̃4(l · ne)
4, (5.59)

where the l-dependence is shown explicitly. We note that the degree of the polynomial on
the right hand side of Eq. (5.59) is the direct consequence of the fact that the highest rank
tensor four-point functions that we consider is four. This restriction works well if we deal
with renormalizable quantum field theories but it might not be general enough if one-loop
calculations with effective field theories are attempted. The extension of the algorithm to
those cases is straightforward since the required parametrization of a numerator function
of, say, a four-point function will be an extension of Eq. (5.59) to higher rank tensors.
It is straightforward to figure out the required extension, following the line of reasoning
explained above. Interestingly, such extensions are very economical; for example, we
mention that to achieve a reduction of a rank-five four-point functions, we only need to
include one additional term d̃5(l ·nǫ)

4(l ·n4) in the parametrization of d̃0123 in Eq. (5.59).
We now turn our attention to the three-point functions that are obtained in the

course of the reduction of the four-point functions. The highest tensor rank we have to
care about is three. The physical space is two-dimensional and the transverse space is
two-dimensional as well. The loop momentum reads

lµ =
2
∑

i=1

vµ
i (l · qi) + (l · n3)n

µ
3 + (l · n4)n

µ
4 + (l · nǫ)n

µ
ǫ . (5.60)

We follow the same procedure as already described in the context of five- and four-
point functions. The reduced terms will be at most rank-two two-point functions. The
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irreducible structures read

4
∏

i=3

(l · ui)→
4
∑

i=3

c1i(l · ni) +

4
∑

i=3

c2i(l · ni)
2 +

4
∑

i=3

c3i(l · ni)
3

+ c4(l · n4)(l · n3) + c5(l · n3)
2(l · n4) + c6(l · n3)(l · n4)

2

(5.61)

Similar to the case of the four-point function, not all the terms in Eq. (5.61) are in-
dependent in the four-dimensional case. To make this dependence explicit, we square
Eq. (5.60), use l2 = d0 +m2

0 and find

(l · n3)
2 + (l · n4)

2 + (l · nǫ)
2 = constant terms +O(d0, d1, d2). (5.62)

We use this constraint in Eq. (5.61), to trade (l ·n3)
2(l ·n4), (l ·n4)

2(l ·n3) for (l ·nǫ)
2(l ·n4)

and (l · nǫ)
2(l · n3). Also, given Eq. (5.62), we can use (l · nǫ)

2 and (l · n3)
2 − (l · n4)

2 as
two independent structures, instead of (l · n3)

2 and (l · n4)
2. Hence, the parametrization

of the function c̃012 becomes

c̃012(l) = c̃0 + c̃1(l · n3) + c̃2(l · n4) + c̃3((l · n3)
2 − (l · n4)

2)

+ c̃4(l · n3)(l · n4) + c̃5(l · n3)
3 + c̃6(l · n4)

3

+ c̃7(l · nǫ)
2 + c̃8(l · nǫ)

2(l · n3) + c̃9(l · nǫ)
2(l · n4).

(5.63)

The advantage of this parametrization, compared to Eq. (5.60), is that in four dimensions
only c̃0 gives a non-vanishing contribution after integration.

Similar considerations can be used to derive the general parametrization of the two-
point and one-point functions. Recall that the highest tensor rank of the two-point
function that we consider is two; the highest tensor rank of the one-point function is one.
We will not discuss the derivation and just give the results for the numerator functions.
The numerator of the two-point function can be written as

b̃01(l) = b̃0 + b̃1(l · n2) + b̃2(l · n3) + b̃3(l · n4)

+ b̃4((l · n2)
2 − (l · n4)

2) + b̃5((l · n3)
2 − (l · n4)

2) + b̃6(l · n2)(l · n3)

+ b̃7(l · n3)(l · n4) + b̃8(l · n2)(l · n4) + b̃9(l · nǫ)
2, (5.64)

while the general parametrization of the numerator of the one-point function for propa-
gator di is

ãi(l) = ã0 + ã1(l · n1) + ã2(l · n2) + ã3(l · n3) + ã4(l · n4). (5.65)

In Equation (5.65) ã0 is the relevant reduction coefficient since all other terms integrate
to zero.

5.4 How to compute the reduction coefficients

In the previous Section we showed how an integrand of a general one-loop integral in a
renormalizable quantum field theory can be parametrized. An important feature of this
parametrization is that all l-dependent four-dimensional tensors that are present in the
coefficients ẽi1..i5

, .., ãi1
are evanescent under angular integration in the transverse space
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of the respective reduced integral. We will refer to such tensors as “traceless”. This
feature is extremely important since it allows us to perform the integration immediately
and rewrite Eq. (5.48) in a simplified, fully reduced form

IN =

∫

dDl

(2π)D
Num(l)
∏

i di(l)
=

∑

i1,i2,i3,i4,i5

ẽ
(0)
i1,i2,i3,i4,i5

Ii1i2i3i4i5

+
∑

i1,i2,i3,i4

d̃
(0)
i1,i2,i3,i4

Ii1i2i3i4 +
∑

i1,i2,i3

c̃
(0)
i1,i2,i3

Ii1i2i3

+
∑

i1,i2

b̃
(0)
i1,i2

Ii1i2 +
∑

i1

ã
(0)
i1
Ii1 +R.

(5.66)

The right hand side of Eq. (5.66) contains scalar integrals multiplied by l-independent
contributions of the reduction coefficients ẽ(0), d̃(0), b̃(0), etc. and the “rational” term R
which originates from the integration over the loop momentum of tensorial structures
involving (l · nǫ). Eq. (5.66) gives an explicit demonstration of the reduction formula
stated in Eq. (??).

The reason the integration over the loop momentum is so simple is because the pro-
jection on the transverse space is always given in terms of traceless tensors. To illustrate
this point, consider a contribution of a general two-point function to the right-hand side
of Eq. (5.48). It reads

∫

dDl

(2π)D
1

(l2 −m2
0)(l

2 + 2l · q + q2 −m2
1)

{

b̃0 + b̃1(l · n2)

+ b̃2(l · n3) + b̃3(l · n4) + b̃4((l · n2)
2 − (l · n4)

2)

+ b̃5((l · n3)
2 − (l · n4)

2) + b̃6(l · n2)(l · n3) + b̃7(l · n3)(l · n4)

+ b̃8(l · n2)(l · n4) + b̃9(l · nǫ)
2

}

.

(5.67)

Because q ·nǫ = 0, q ·ni = 0, i = 2, 3, 4, the integration over the directions of the transverse
space l⊥ = n2(l · n2) + n3(l · n3) + n4(l · n4) + nǫ(l · nǫ) is straightforward. We obtain

∫

dD−1l⊥δ(l
2
⊥ − µ2

0)
(

lµ⊥, l
µ
⊥l

ν
⊥
)

=

∫

dD−1l⊥δ(l
2
⊥ − µ2

0)

(

0,
gµν
⊥

D − 1
l2⊥

)

. (5.68)

Using this result in Eq. (5.67) together with the orthonormality property of the trans-
verse space basis vectors ninj = δij , we conclude that only two terms – b̃0 and b̃9 con-
tribute after the integration over the loop momentum is performed. The term with b̃9
contributes to the rational part R in Eq. (5.66), while b̃0 is the reduction coefficient
of the relevant two-point master integral. Similar considerations apply to all other re-
duction coefficients, leading to Eq. (5.66). Clearly, we are interested in the calculation
of quantities that are integrated over the loop momentum. It follows from Eq. (5.66)
that, in addition to the rational part, we only require a modest number of the reduction
coefficients ẽ(0), d̃(0), c̃(0), .. etc. The question that we address now is how to find those
coefficients efficiently.
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In the course of the discussion of the two-dimensional case, we have seen that a pow-
erful way to find coefficients ẽi1..i5

, ..., ãi1
involves calculations of both sides of Eq. (5.48)

for special values of the loop momentum l, where a chosen subset of inverse Feynman
propagators d1, d2, ..., dN vanish. We now discuss this procedure in detail, pointing out
some subtleties that appear once we implement it.

We begin with the five-point function contribution. We choose five inverse propaga-
tors, say d0, d1, ...d4 and find the loop momentum for which all of these inverse propa-
gators vanish. This requires the momentum l to span more than four dimensions, so,
for definiteness, we make the minimal choice and take l to be five-dimensional. Clearly,
the only term in the right hand side of Eq. (5.48) that is non-zero is the term that does
not contain any of the five propagators. This is ẽ01234 – the term that we would like to
find. We argued previously that this term is constant, so computing the left hand side of
Eq. (5.48) with the momentum l∗ such that d0(l

∗) = 0, d1(l
∗) = 0, ...d4(l

∗) = 0, gives us
ẽ01234.

While this procedure is correct, it often becomes impractical since it treats the scalar
five-point function as a master integral. This would have been fully justified if we were
interested in a five-dimensional calculation, but, in practical computations, we eventually
take the limit D → 4. In this limit, the five-point function becomes a linear combination
of five four-point functions. We would therefore like to eliminate the five-point integral
from the set of master integrals right away, avoiding large cancellations between four-
and five-point functions in the D → 4 limit. To see how this can be done note that the
loop momentum in the five-point function can be written as

lµ =
1

2

4
∑

i=1

vµ
i

(

di − d0 − (q2i −m2
i +m2

0)
)

+ (l · nǫ)n
µ
ǫ . (5.69)

Squaring the two sides of this equation and using l2 = d0 +m2
0, we see that for a loop

momentum that satisfies d0 = 0, d1 = 0, . . . d5 = 0, we have

(l · nǫ)
2 = −1

4

∑

ij

(vi · vj)(q
2
i −m2

i +m2
0)(q

2
j −m2

j +m2
0) +m2

0 . (5.70)

It follows that we can either choose a scalar five-point function as the master integral or
the integral with additional (l · nǫ)

2 in the numerator. However, because

lim
D→4

∫

dDl

(2π)D
(l · nǫ)

2

d1d2d3d4d5
→ 0, (5.71)

the second choice is preferable. Indeed, since the new master integral that we introduced
to account for the need to employ dimensional regularization does not contribute in the
D → 4 limit, all four-dimensional relations between various integrals are automatically
accounted for. Therefore this coefficient is only needed as a subtraction term in the
determination of lower point coefficients. Experience shows that adopting this alternative
definition of the pentagon coefficient leads to improved numerical stability in practical
computations[18, 19].

To find the other coefficients, we follow the strategy already discussed in the context of
two-dimensional computations. For example, having determined the five-point functions,
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we subtract their coefficients from the left-hand side of Eq. (5.48) and consider all the
subsets of four propagators. We focus on one subset, d0, ..., d3 whose contribution is
described by the coefficient

d̃0123 = d̃0 + d̃1(l · n4) + d̃2(l · nǫ)
2 + d̃3(l · nǫ)

2(l · n4) + d̃4(l · ne)
4. (5.72)

To determine d̃0123, we find a momentum l that satisfies d0(l) = 0, d1(l) = 0, d2(l) = 0,
d3(l) = 0 and write it as

lµ = V µ + l⊥(cosφ nµ
4 + sinφ nµ

ǫ ),

V µ = −1

2

3
∑

i

vµ
i

(

q2i −m2
i +m2

0

)

,
(5.73)

with l⊥ =
√
l⊥ · l⊥. Again it is sufficient to consider l to be five dimensional. The length

of the projection of the vector l on the transverse space is fixed

l2⊥ = m2
0 − VµV

µ. (5.74)

To find the d̃0, ...d̃4 coefficients, we take for instance sinφ = 0, cos φ = ±1, denote
lµ± = V µ ± l⊥nµ

4 , calculate the numerator for these values of the loop momenta and find

d̃0 =
Num(l+) + Num(l−)

2
, d̃1 =

Num(l+)−Num(l−)

2l⊥
. (5.75)

To find d̃2,3,4, we need to do a little bit more. First, we take cosφ = sinφ = ±1/
√

2,
denote the loop momentum as l̃± = V ± l⊥(n4 + nǫ)/

√
2, and find

d̃2 + d̃4
l2⊥
2

=
1

l2⊥

(

Num(l̃+) + Num(l̃−)− 2 d̃0

)

,

d̃3 =

√
2

l3⊥

(

Num(l̃+)−Num(l̃−)−
√

2d̃1l⊥
)

.

(5.76)

We need yet another equation to resolve the d̃2 − d̃4 degeneracy. It is convenient to take
lµǫ = V µ + l⊥n

µ
ǫ ; this leads to

d̃2 + d̃4l
2
⊥ =

Num(lǫ)− d̃0

l2⊥
. (5.77)

We find

d̃2 =
1

l2⊥

(

2Num(l̃+) + 2Num(l̃−)−Num(lǫ)− 3d̃0

)

,

d̃4 =
2

l4⊥

(

Num(lǫ)−Num(l̃+)−Num(l̃−) + d̃0

)

.

(5.78)

We next discuss how to compute the coefficients of the three-point functions. As an
illustration, we choose a three point function with denominators d0, d1, d2; its contribution
is described by a coefficient

c̃012 = c̃0 + c̃1(l · n3) + c̃2(l · n4) + c̃3((l · n3)
2 − (l · n4)

2)

+ c̃4(l · n3)(l · n4) + c̃5(l · n3)
3 + c̃6(l · n4)

3

+ c̃7(l · nǫ)
2 + c̃8(l · nǫ)

2(l · n3) + c̃9(l · nǫ)
2(l · n4).

(5.79)
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We choose the loop momentum that satisfies d0(l) = d1(l) = d2(l) = 0 and parametrize
it as

lµ = V µ + l⊥(x3n
µ
3 + x4n

µ
4 + xǫn

µ
ǫ ). (5.80)

Consider the class of momenta with xǫ = 0; such a choice allows us to determine the
coefficients c̃0,..6. If xǫ = 0, x2

3 + x2
4 = 1, so that we can take x3 = cosφ, x4 = sinφ.

It is convenient then to rewrite Eq. (5.79) as a polynomial in t = eiφ. Equation (5.79)
becomes

c̃012(t) =
3
∑

k=−3

ckt
k, (5.81)

where the coefficients ck read

c±3 =
c̃5 ± ic̃6

8
l3⊥, c±2 =

2c̃3 ∓ ic̃4
4

l2⊥,

c±1 =

(

1

2
c̃1 ∓

i

2
c̃2,

)

l⊥ +

(

3

8
c̃5 ∓

3i

8
c̃6

)

l3⊥ ,
(5.82)

and c0 = c̃0. We can now use the technique of discrete Fourier transform, first discussed
in the context of the OPP reduction, in Refs. [20, 21]. Application of the discrete Fourier
transform allows us to write explicit expressions for the coefficients ck in a straightforward
way. Indeed, they are given by

cm =
1

7

6
∑

n=0

c̃012(tn) t−m
n , (5.83)

where tn = e2π i n/7. To prove this equation, note that

k
∑

n=0

e
2πin
k+1

r = δr0(k + 1). (5.84)

Hence, substituting Eqs. (5.81) into the right hand side of Eq. (5.83) and carrying out
the summation over n using Eq. (5.84), we can easily show that the right hand side of
Eq. (5.83) is indeed one of the c-coefficients. Hence, Eq. (5.83) provides a convenient
way to find the cut-constructible coefficients of the three-point function. Finally, to
determine the rational part coefficients in Eq. (5.79), we take vectors l that have non-
vanishing projections on either n3 and nǫ or on n4 and nǫ. Since we already know all the
cut-constructible coefficients, it is straightforward to find c̃7,8,9.

We note that the discrete Fourier transform is just one of many ways to solve the
linear system of equations required to obtain the coefficients c̃0, ...c̃6. It is a convenient,
easy-to-code-up procedure, but it is neither unique nor superior to other ways. In fact,
it is clear that in certain cases it is better to avoid using the discrete Fourier transform
method and to solve the system of equations by other means.

To see why this might be the case, we discuss the computation of the reduction
coefficients for the two-point function with two propagators d0 and d1. Then, the physical
space is one-dimensional and the transverse space is three-dimensional. The momentum
parametrization therefore reads

lµ = x1q
µ
1 + l⊥

(

4
∑

i=2

xin
µ
i + xǫn

µ
ǫ

)

, q1 · ni≥2 = 0, ni · nj = δij . (5.85)
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Using Eq. (5.85), we find that components of the momentum l for which d1,2 = 0 are
subject to the following constraints

x1 =
(m2

1 −m2
0 − q21)

2q21
, l2⊥ = m2

0 − x2
1q

2
1, x2

2 + x2
3 + x2

4 + x2
ǫ = 1. (5.86)

The general parametrization of the b̃-coefficient reads

b̃01 = b̃0 + b̃1(l · n2) + b̃2(l · n3) + b̃3(l · n4)

+ b̃4((l · n2)
2 − (l · n4)

2) + b̃5((l · n3)
2 − (l · n4)

2) + b̃6(l · n2)(l · n3)

+ b̃7(l · n3)(l · n4) + b̃8(l · n2)(l · n4) + b̃9(l · nǫ)
2. (5.87)

Similar to the case of the three-point function, there are infinitely many loop momenta
that satisfy the constraints shown in Eq. (5.86). Therefore, to find the cut-constructible
coefficients, we can proceed as before, parametrizing

lµ⊥ = l⊥ (sin θ cosφ nµ
2 + sin θ sinφ nµ

3 + cos θ nµ
4 ) , (5.88)

and then applying the technique of the discrete Fourier transform to determine b̃0, . . . b̃8.
Note, however, that the application of the discrete Fourier transform requires division by
l⊥, c.f. Eq. (5.82) and this may lead to potential trouble. Indeed, according to Eq. (5.86),
l⊥ vanishes if m2

0 = x2
1q

2
1 which corresponds to q21 = (m0 − m1)

2 or q21 = (m0 + m1)
2.

These kinematic points are not dangerous if only massless virtual particles are considered.
However, the situation may become problematic if virtual massive particles are present
in the calculation. Note also that close to those exceptional values of q21, l⊥ can be small,
so that division by l⊥ may lead to numerical instabilities.

To handle the case of small l⊥ in a numerically stable way, the method of discrete
Fourier transform is not directly applicable and the system of equations must be solved
differently. There are many ways to solve a system of linear equations avoiding division
by l⊥; one option is described below. We begin by choosing l±⊥ = x⊥n2±x3n3, l

±
⊥ ·l±⊥ = l2⊥.

Recall that l2⊥ is fixed by the on-shell condition Eq. (5.86) and therefore x3 is expressed

through x⊥, x3 =
√

l2⊥ − x2
⊥. We calculate b± = b(l±) and eliminate x2

3 in favor of l2⊥
and x⊥ where possible. We obtain

b± = b̃0 + b̃1x⊥ ± x3b̃2 + b̃4x
2
⊥ + b̃5x

2
3 ± b̃6x⊥x3. (5.89)

Taking the sum and the difference of b±, we arrive at

(b+ + b−)

2
= b̃eff0 + b̃1x⊥ + b̃eff4 x2

⊥,
(b+ − b−)

2x3
= b̃2 + b̃6x⊥ , (5.90)

where

b̃eff0 = b̃0 + b̃5l
2
⊥ ,

b̃eff4 = b̃4 − b̃5 . (5.91)

The right hand sides of these equations are polynomials in x⊥. Therefore, we can apply
a discrete Fourier transform with respect to x⊥ to find coefficients b̃1, b̃

eff
4 , b̃eff0 as well as

b̃2, b̃6 in Eq. (5.90).
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To determine the remaining coefficients, we make five choices of the loop-momentum,
satisfying the on-shell condition. We choose for instance

l(a) = x1q1 + xn2 + yn4 ,

l(b) = x1q1 − xn2 + yn4 ,

l(c) = x1q1 − xn2 − yn4 ,

l(d) = x1q1 + xn4 + yn3 ,

l(e) = x1q1 + xn2 + ynǫ . (5.92)

where x2 +y2 = l2⊥. We use the notation bα = b(l(α)). With the coefficients b̃eff0 , b̃1, b̃2, b̃
eff
4

and b̃6 in hand, we determine the other coefficients in the sequence, b̃8, b̃3, b̃5, b̃7, b̃9, b̃0, b̃4.
The results are

b̃8 =
(1
2(ba − bb)− xb̃1)

xy
,

b̃3 =
1
2(ba − bc)− b̃1x

y
,

b̃5 =
b̃eff0 + b̃3y + yxb̃8 + xb̃1 + (x2 − y2)b̃eff4 − ba

3y2
,

b̃7 =
(bd − y2b̃5 + b̃5x

2 + b̃4x
2 − b̃3x− yb̃2 − b̃0)

xy
,

b̃9 =
(be − b̃4x2 − b̃1x− b̃0

y2
. (5.93)

The coefficients b̃0 and b̃4 are determined using Eq. (5.91) once b̃5 has been fixed.
We have just described a method to calculate coefficients b̃1,...9 in a numerically stable

way for small values of l⊥. Note that we used the fact that even for arbitrarily small l2⊥
we can choose large, complex values of x, y with x2 + y2 = l2⊥. In the numerical program,
we switch from the discrete Fourier transform to the solution just described, depending
on the value of l⊥. However, the described methods can only work if the decomposition
of the loop momentum, as in Eq. (5.85), exists. A glance at Eq. (5.86) makes it clear
that the decomposition fails for the light-like momentum, q21 = 0, and we have to handle
this case differently. We describe a possible solution below.

First, some clarifications are in order. Because we are interested in one-loop calcu-
lations for infra-red safe observables, it is reasonable to assume that the vector q1 can
be exactly light-like but it is impossible for that vector to be nearly light-like, since such
kinematic configurations are, typically, rejected by cuts2. Hence, we have to modify
the above analysis to allow for an exactly light-like external momentum. To this end, we
choose a frame where the four-vector in Eq. (5.85) reads q1 = (E, 0, 0, E). We introduce a
complementary light-like vector q̄1 = (E, 0, 0,−E). The loop momentum is parametrized
as l = x1q1 + x2q̄1 + l⊥. We denote the basis vectors of the transverse space as n3,4;

2External particles with small masses are obvious exceptions but rarely do we need to know observables for,

say, massive b-quarks in a situation when all kinematic invariants are large.
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they satisfy ninj = δij , q1 · n3,4 = 0, q̄1 · n3,4 = 0. The on-shell condition for the loop
momentum fixes x2

x2 =
m2

1 −m2
0

s
, s = 2q1q̄1, (5.94)

and a linear combination of x1 and l2⊥

l2⊥ +m2
1x1 −m2

0(1 + x1) = 0. (5.95)

Compared to the case when the reference vector q1 is not on the light-cone, we write now
the parametrization of the function b̃ using n4 · l. We choose it to be

b̃(l) = b̃0 + b̃1(q̄1 · l) + b̃2(n3 · l) + b̃3(n4 · l) + b̃4(q̄1 · l)(q̄1 · l)
+b̃5(q̄1 · l)(n3l) + b̃6(q̄1 · l)(n4 · l) + b̃7((n3 · l)2 − (n4 · l)2)
+b̃8(n3 · l)(n4 · l) + b̃9(l · nǫ)

2. (5.96)

We describe a procedure to find the coefficients b̃0, . . . b̃9 in a numerically stable way.
To this end, we choose x1 = 0.5. This fixes l2⊥, and x2 is fixed by the on-shell condition
Eq. (5.94). The freedom remains to choose the direction of the vector l⊥ in the (n3, n4)
plane. Consider four different vectors

l
(a)
⊥ = yn3 + xn4, l

(b)
⊥ = −yn3 + xn4, l

(c)
⊥ = yn3 − xn4, l

(d)
⊥ = −yn3 − xn4, (5.97)

where x2 + y2 = l2⊥. We use vectors l(α) = x1q1 + x2q̄1 + l
(α)
⊥ , α = a, b, c, d, to calculate

the function b(α) = b̃(lα). Using ba, ...bd, we can immediately find the coefficient b8

b̃8 =
1

4xy

(

b(a) − b(c) − b(b) + b(d)
)

. (5.98)

For the determination of the remaining coefficients, it is convenient to introduce two
linear combinations

b36 =
1

4x

(

b(a) − b(c) + b(b) − b(d)
)

,

b25 =
1

2

(

b(a) − b(b) − 2xyb8

)

.

(5.99)

As the next step, we choose x1 = −0.5. Note that this changes the value of l2⊥
according to Eq. (5.95). We then repeat the calculation described above. Our choices of
momenta in the transverse plane l⊥ are the same as in Eq. (5.97) but, to avoid confusion,
we emphasize that x and y have to be calculated with the new l2⊥. We will refer to b
computed with those new vectors as b̄(a), b̄(b), etc. We calculate b̄36,25 by substituting
b(α) → b̄α in Eq. (5.99). It is easy to see that simple linear combinations give the desired
coefficients

b̃3 =
1

2

(

b36 + b̄36
)

, b̃6 =
2

s

(

b36 − b̄36
)

,

b̃2 =
1

2

(

b25 + b̄25
)

, b̃5 =
2

s

(

b25 − b̄25
)

. (5.100)
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Other coefficients, required for the complete parametrization of the function b̃(l) in
Eq. (5.96), are obtained along similar lines; we do not discuss this further. However, we
emphasize that the procedure that we just described is important for the computation
of one-loop virtual amplitudes in a situation where both massless and massive particles
are involved. In particular, it is heavily used in computations of NLO QCD corrections
to top quark pair production discussed in Refs. [22, 23].

As a final remark, we note that there is another important difference between reducing
the two-point function to scalar integrals for a light-like and a non-light-like vector.
Consider only cut-constructible terms. Then, for q21 6= 0 integration over the transverse
space can be immediately done, leading to

∫

dDl

(2π)D
b̃(l)

d0d1
= b̃0

∫

dDl

(2π)D
1

d0d1
. (5.101)

Hence, the only integral we need to know in q21 6= 0 case is the scalar two-point function.
However, in case of a light-like vector q21 = 0, three master integrals contribute to the
cut-constructible part even after averaging over the directions of the vector l in the (two-
dimensional) transverse space

∫

dDl

(2π)D
b̃(l)

d0d1
=

∫

dDl

(2π)D
b̃0 + b̃1(q̄1 · l) + b̃4(q̄1 · l)2

d0d1
. (5.102)

Those integrals must be included in the basis of master integrals in the case when double
cuts are considered with a light-like vector external vector. The calculation of those
additional master integrals is straightforward. For completeness, we give the results below
for the equal mass case m0 = m1 = m. We introduce d0 = l2 −m2, d1 = (l + q1)

2 −m2,
q21 = 0, q̄1q1 = r, cΓ = (4π)ǫ−2Γ(1 + ǫ)Γ(1− ǫ)2/Γ(1− 2ǫ) and find (D = 4− 2ǫ)

µ2ǫ

icΓ

∫

dDl

(2π)D
lq̄1
d0d1

= −r
2

(

1

ǫ
+ ln

(

µ2

m2

))

, (5.103)

µ2ǫ

icΓ

∫

dDl

(2π)D
(lq̄1)(lq̄1)

d0d1
= +

r2

3

(

1

ǫ
+ ln

(

µ2

m2

))

. (5.104)

5.5 Comments on the rational part

The most general parametrizations of ẽ, d̃, c̃, b̃ and ã-functions contain two types of terms.
First, there are terms that involve scalar products of the loop momenta with four-
dimensional vectors from various transverse spaces. Second, there are terms that in-
volve scalar products of the loop momentum with the (D − 4)-dimensional components
of the vectors spanning the transverse space. These latter terms require going beyond
the four-dimensional loop momentum and give rise to the rational part.
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6 Analytic techniques for one loop diagrams

6.1 Analytic Unitarity

The idea that unitarity can be used to calculate a loop integral is quite old. For example,
Landau’s book contains a dispersive calculation of the one-loop vertex function. However
in the present context we do not want to perform the dispersive integral, rather we want
to match the cut amplitudes, with a general set of scalar basis integrals, in such a way
that we can identify the coefficients with which the basis integrals appear.

Britto et al. [24] have presented an efficient way to extract the box coefficients di by
performing quadruple cuts. Performing a quadruple cut corresponding to a particular
scalar box integral corresponds to replacing the each of the four propagators by

1

l2i + iε
→ δ+(l2i ) (6.1)

This operation completely fixes all four components of the loop momentum. A gen-
eral diagram will have numerator factors and in the case of higher point functions, also
additional denominators, which we denote by N(l)

A =

∫

d4l

(2π)4
N(l)

(l20 + iε)(l21 + iε)(l22 + iε)(l23 + iε)

→
∫

d4l

(2π)4
N(l) δ+(l20)δ

+(l21)δ
+(l22)δ

+(l23)

=
1

2

∑

solutions

N(l) . (6.2)

The sum is over the two solutions to the four simultaneous on-shell conditions.
If now apply the method to a complete amplitude, terms in the amplitude which

do not contain all four of the cut denominators will not contribute to the discontinuity.
This statement applies both to box or higher point integrals, which do not contains all
four of the relevant propagators and to lower point functions, such as triangles which
can contain at most three of the four propagators. Applying the same operation on the
right-hand side of Eq. (??) neither the other box integrals, nor the lower point functions
will contribute to the singularity. We can therefore read off the coefficient of the box
integral in question. The overall result for the contribution of the given amplitude to the
coefficient of a box integral is given by,

di =
1

2

∑

l±

Atree
1 (l)Atree

2 (l)Atree
3 (l)Atree

4 (l) (6.3)

where the Atree
i are tree amplitudes at the four corners of the particular box in question.

Thus, in order to calculate all the box coefficients, we have to perform quadruple cuts
corresponding to all box integrals which could be present.

54



6.2 Analytic methods

We will illustrate these methods by considering a specific case, for a simple 2 to 2
process. In particular we wish to calculate the one-loop amplitude for the process
A4(1

−
q , 2

+
g , 3

−
g , 4

+
q̄ ). The explicit decomposition of the qggq̄ one-loop amplitude is

A4(1q, 2g, 3g, 4q̄) = g4

[

Nc (T a2T a3) ī4
i1

A4;1(1q, 2, 3, 4q̄) + Nc (T a3T a2) ī4
i1

A4;1(1q, 3, 2, 4q̄)

+ Tr(T a2T a3) δ ī4
i1

A4;3(1q, 2, 3, 4q̄)

]

, (6.4)

These colour stripped amplitudes can be further decomposed into primitive amplitudes,[25]

A4;1(1q, 2, 3, 4q̄) = AL
4 (1q, 2, 3, 4q̄)−

1

N2
c

AR
4 (1q, 2, 3, 4q̄)

+
nf

Nc
A

L,[1/2]
4 (1q, 2, 3, 4q̄) +

ns

Nc
A

L,[0]
4 (1q, 2, 3, 4q̄) (6.5)

The last two terms refer to terms with fermion or scalar loops. We will not consider
either of these cases in this discussion. To further simplify the discussion we will only
discuss the colour suppressed piece AR

4 (1q, 2, 3, 4q̄). The relevant Feynman diagrams are
shown in Fig. 6.1.

Figure 6.1: Feynman diagrams for the colour suppressed piece of the amplitude, AR
4 (1q, 2, 3, 4q̄).

6.2.1 Example of the calculation of box coefficients

A simple example will illustrate the power of the method. Consider the diagram shown
in Fig. 6.2. Momentum assignments are l2 = l0 − p2, l12 = l0 − p1 − p2, l3 = l0 + p3 and
all momenta are taken to be outgoing.

How do we parameterize the momenta which satisfy the four on-shell conditions? We
choose to expand the vector l0, (which is flanked on either side by two massless momenta
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Figure 6.2: A box contribution to the amplitude M(1−q , 2+
g , 3−g , 4+

q̄ )

p2 and p3), in terms of p2 and p3 as well as the complex momenta formed from spinors
of p2 and p3.

lµ0 = αpµ
2 + βpµ

3 + γǫµ23 + δǫµ32 (6.6)

where

ǫij =
1

2
〈i− |γµ|j−〉 (6.7)

For the purposes of this section we shall make the notation even more compact. Thus
we write,

|i−〉 → |i]
|i+〉 → |i〉
〈i− | → 〈i|
〈i+ | → [i| (6.8)

Now we use the mass shell conditions (l22 = l23 = L2
0 = l212 = p2

2 = p2
3 = 0). From the first

two we obtain that (l0 − p2)
2 ≡ −2l0 · p2 = 0 and (l0 + p3)

2 ≡ 2l0 · p3 = 0, which tell us
that α = 0 and β = 0. The condition that l20 = 0 tells us that the product γδ = 0, since

ǫij · ǫij = 0

ǫij · ǫji =
1

2
sij (6.9)

56



We shall consider the choice δ = 0; this we will justify a posteriori in the next section.
Finally the condition that (l1 − p1 − p2)

2 is on its mass shell gives us the condition,

− γ 〈p2|6p1 + 6p2|p3] + 2p1.p2 = 0 (6.10)

Hence we have that γ = [1 2]/[1 3]

6.3 Box coefficients for qggq̄

We consider first the case where the external gluons have the same helicity. This vanishes
because we would have (++-) at both at the vertex where p2 flows out and at the vertex
where p3 flows out. This implies that the two vertices are

[2 l0]
2

[l2 l0]
× [3 l3]

2

[l0 l3]
(6.11)

or consequently that both 〈l0 2〉 = 0 and 〈l0 3〉 = 0 which cannot simultaneously be
satisfied for arbitrary external momenta p2 and p3. This helicity amplitude thus has a
vanishing contribution to the coefficient of this box integral.

Next consider the case where the gluons have opposite helicities as shown in Fig. 6.2.
Momentum assignments are l2 = l0 − k2, l12 = l0 − k1 − k2, l3 = l0 + k3.

AR
4 (1−q , 2

+
g , 3

−
g , 4

+
q̄ )|box coeff =

〈l12 1〉2
〈1 l2〉

× [2 l0]
2

[l2 l0]
× 〈l0 3〉2
〈l0 l3〉

× [4 l12]
2

[4 l3]
(6.12)

Since from Eq. (6.12) we have that |l0〉 ∼ |2〉, |l0] ∼ |3] in order that 〈l0 2〉 = 0 and that
[l0 3] = 0. The helicities of our diagrams pick the solution δ = 0 so that we have.

lµ0 = γǫµ23 (6.13)

or in other words that, up to an overall constant which cancels since l0 always appears
in the combination 6l0,

|l0〉 = γ|2〉, |l0] = |3] (6.14)

Collecting terms we may write Eq. (6.12) as,

M(1−q , 2
+
g , 3

−
g , 4

+
q̄ ) =

〈1|6l12|4]2〈3|6l0|2]2
〈1|6l2 6l06l3|4]

=
〈1|6l0 − 62|4]2〈3|6l0|2]2
〈1 2〉[2|6l0|3〉[34]

=
(γ〈1 2〉[3 4] − 〈1 2〉[2 4])2γ〈3 2〉[3 2]

〈1 2〉[3 4]

(6.15)
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where we have made the substitution 6l0 = γ|2〉[3|. Now from Eq. (6.10) γ = [1 2]/[1 3],
so we get

AR
4 (1−q , 2

+
g , 3

−
g , 4

+
q̄ )|box coeff =

〈1 2〉2([1 2][3 4] − [1 3][2 4])2 [1 2]〈3 2〉[3 2]

〈1 2〉[1 3]3 [3 4]

=
〈1 2〉[1 4]2[1 2]〈3 2〉[3 2]3

[1 3]3[3 4]

=
〈1 2〉〈1 4〉[1 4]2[1 2]〈3 2〉[3 2]3

[1 3]3[3 4]〈1 4〉

=
〈1 4〉[1 4]2[1 2]〈3 2〉[3 2]2

[1 3]3

=
s223s12[1 4][3 2]

〈1 2〉[1 3]3

=
s23s12[1 4]2[2 3]2

[1 3]3[3 4]
(6.16)

In the above derivation we have been cavalier about signs and overall factors. Adjusting
those, this result agrees with the result in Eq. (7.68).

7 Triangles, bubbles and rational terms

7.1 Triangles

7.1.1 Forde method for triangle coefficients

We will calculate the coefficient of the triangle integrals using the method of Forde [26].
We first review the case of three massless internal momenta, shown in Fig. 7.1 in order
to introduce our notation which differs from that of Forde. Defining l1 and l2 as follows,

lµ1 = lµ0 −Kµ
1 , lµ2 = lµ0 +Kµ

2 , (7.1)

the cut loop momenta (l2i = 0), i = 0, 1, 2 may be written in the following general form

lµi = xiK
♭,µ
1 + yiK

♭,µ
2 +

t

2
〈K♭

1|γµ|K♭
2] +

xiyi

2t
〈K♭

2|γµ|K♭
1]. (7.2)

All momenta can be expanded in terms of massless momenta,

K1 = K♭
1 +

S1

γ
K♭

2 ,

K2 = K♭
2 +

S2

γ
K♭

1 ,

K3 = −(1 +
S2

γ
)K♭

1 − (1 +
S1

γ
)K♭

2 , (7.3)
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Figure 7.1: Triangle diagram showing the momentum parametrization. All momenta are out-

going, K1 + K2 + K3 = 0

where Si = K2
i and γ = 〈K♭

1|K♭
2|K♭

1] = 2K♭
2.K

♭
1. The inverse relations are,

K♭,µ
1 =

Kµ
1 − (S1/γ)K

µ
2

1− (S1S2/γ2)
, K♭,µ

2 =
Kµ

2 − (S2/γ)K
µ
1

1− (S1S2/γ2)
. (7.4)

γ can be expressed in terms of the external momenta,

γ± = (K1 ·K2)±
√

∆, ∆ = (K1 ·K2)
2 − S1S2. (7.5)

The spinor solutions for the li can be expressed as a linear combination of the spinors for
K♭

1 and K♭
2,

〈li| = t〈K♭
1|+ yi〈K♭

2| , [li| =
xi

t
[K♭

1|+ [K♭
2| . (7.6)

The on-shell conditions l2i = 0 for i = 0, 1, 2 allow us to derive the coefficients, xi and yi,

y0 =
S1 (γ + S2)

(γ2 − S1S2)
, x0 = − S2 (γ + S1)

(γ2 − S1S2)
,

y1 = y0 −
S1

γ
=
S1S2 (γ + S1)

γ(γ2 − S1S2)
, x1 = x0 − 1 = − γ(γ + S2)

γ2 − S1S2
,

y2 = y0 + 1 =
γ(γ + S1)

γ2 − S1S2
, x2 = x0 +

S2

γ
= −S1S2 (γ + S2)

γ(γ2 − S1S2)
. (7.7)
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The spinor products can be expressed as follows

[ll1] =
x1 − x0

t
[K♭

2K
♭
1] = −1

t
[K♭

2K
♭
1],

〈l l1〉 = t(y1 − y0)〈K♭
1K

♭
2〉 = − tS1

γ
〈K♭

1K
♭
2〉,

[ll2] =
x2 − x0

t
[K♭

2K
♭
1] =

S2

γt
[K♭

2K
♭
1],

〈l l2〉 = t(y2 − y0)〈K♭
1K

♭
2〉 = t〈K♭

1K
♭
2〉,

[l1l2] =
x2 − x1

t
[K♭

2K
♭
1] =

1

t

(

1 +
S2

γ

)

[K♭
2K

♭
1],

〈l1 l2〉 = t(y2 − y1)〈K♭
1K

♭
2〉 = t

(

1 +
S1

γ

)

〈K♭
1K

♭
2〉. (7.8)

So far this is just algebra, that we have performed to impose the three mass shell
constraints, l20 = (l−K1)

2 = (l+K2)
2 = 0. From Eq. (7.2) we see that the parametrization

of the momenta is of the form

lµ = aµ
0 t+

1

t
aµ

1 + aµ
2 (7.9)

Let us assume that there is another l dependent propagator, say of the form, (l − P )2.
From Eq.(7.9) we see that this fourth propagator, were it to go on shell, would lead to a
term of the form,

(l − P )2 = 0→ −2t a0 · P −
2

t
a1 · P − 2 a2 · P + P 2 = 0 (7.10)

This quadratic in t will have two (complex) solutions that we can choose to partial
fraction, leading the following expression for the product of amplitudes at the vertices of
the triangle.

∫

d4l
2
∏

i=0

δ(l2i )A1A2A3 =

∫

d4l
2
∏

i=0

δ(l2i )



Jt

m
∑

i=0

fit
i +

∑

polesj

Rest=tjA1A2A3

t− tj



 (7.11)

The contribution of a triple-cut scalar box can be written down as follows

∫

d4l
2
∏

i=0

δ(l2i )
1

(l − P )2
∼ 1

t+ − t−

(

∫

d4l
2
∏

i=0

δ(l2i )
1

t− t+
−
∫

d4l
2
∏

i=0

δ(l2i )
1

t− t−

)

(7.12)
Therefore the terms with additional poles correspond exactly to the scalar box contri-
butions. What about the remaining terms? What relation do they bear to the triangle
coefficients. To provide the answer to this question we consider return to the parametriza-
tion of the momentum given in equation 7.2. We note first of all that

〈K♭,±
1 |6K1|K♭,±

2 〉 = 0

〈K♭,±
2 |6K1|K♭,±

1 〉 = 0

〈K♭,±
1 |γµ|K♭,±

2 〉〈K♭,±
2 |γµ|K♭,±

1 〉 = 0

(7.13)
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Let us now consider integrals of the form

∫

d4l
〈K♭,−

1 |6l|K♭,−
2 〉n

l20l
2
1l

2
2

= 0

∫

d4l
〈K♭,−

2 |6l|K♭,−
1 〉n

l20l
2
1l

2
2

= 0 (7.14)

Both of these integrals must be equal to zero. The former implies that all negative powers
of t integrate to zero, whereas the latter implies that all positive powers of t integrate to
zero, as a specific consequence of the momentum parametrization, 7.2. Thus the result
for the triangle coefficient is simply given by the coefficient of t0.

7.1.2 Simple case

Figure 7.2: A triangle contribution

The neatest method to pick out the result for the coefficient of the triangle integral
has been given by Forde [26]. We shall explain the method by referring to the particular
case shown in Fig. 7.2. This case is particularly easy since two of the legs are light-like,
but the method which we shall describe is able to handle more complicated cases. For
details, see the paper of Forde [26]. As before we choose to expand the momentum in
terms of

lµ0 = αpµ
2 + βpµ

3 + γǫµ23 + δǫµ32 (7.15)

The conditions (l0 + p3)
2 = (l0 − p2)

2 = 0 fix α = β = 0 as before. However now instead
of two further conditions we have only one, namely l20 = 0. This fixes the product of
γδ = 0. For the same reason as before, in this case we are obliged to take the case δ = 0,
however γ is unconstrained.

lµ0 = γǫµ23 (7.16)
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Note however that
∫

d4l
〈3|6l0|2]n
l20l

2
2l

2
3

= 0→
∫

dγ Jγ γ
nfor n ≥ 1

Because the momentum l0 after integration can only give a term proportional to p2, p3 or
gµν and 〈3|63|2] = 〈3|62|2] = 〈3|γµ|2]〈3|γµ|2] = 0. Thus after removal of the box component
which appears as a pole, the desired coefficient is obtained from the coefficient of γ0. In
general we can obtain the coefficient of the desired scalar integral by, taking the γ0

component of the expansion of γ around infinity.
Results for triangles using the method of Forde. We shall need the amplitude for

quark-quark scattering.

M(1−q , 2
+
q̄ , 3

−
Q, 4

+
Q̄

) =
〈1|γµ|2]〈3|γµ|4]
〈2 1〉[1 2]

= 2
〈1 3〉[4 2]

〈2 1〉[1 2]
(7.17)

Hence we get

[2 l0]
2

[l2 l0]
× 〈l0 3〉2
〈l0 l3〉

× 〈1 l3〉[4 l2]〈l2 1〉[1 l2]

=
〈3|6l0|2]2〈1 l3〉[4 l2][l3 2]〈3 l2〉
〈3 l2〉[l2 l0]〈l0 l3〉[l3 2]〈l2 1〉[1 l2]

=
〈3|6l0|2]2〈1 l3〉[4 l2][l3 2]〈3 l2〉
〈3|6l26l06l3|2]〈l2 1〉[1 l2]

=
〈3|6l0|2]2〈1 l3〉[4 l2][l3 2]〈3 l2〉
〈3 2〉[2|6l0|3〉[3 2]〈l2 1〉[1 l2]

=
〈3|6l0|2]〈1|6l3|2]〈3|6l2|4]
〈3 2〉[3 2]〈l2 1〉[1 l2]

(7.18)

where in the second line we have multiplied top and bottom by [l3 2]〈3 l2〉.
We now substitute the expression for the loop momentum which satisfies the three

momentum constraints
lµ0 =

γ

2
〈2|γµ|3] (7.19)

The above expression now becomes

γ(γ〈1 2〉 + 〈1 3〉)(γ[3 4] − [2 4])[3 2]〈3 2〉
〈1 2〉(γ[3 1] − [2 1])

(7.20)

We can partial fraction this result, to remove the box contribution, which obviously
corresponds to the pole; evaluating the remainder at γ = 0 and using the Schouten
Identity Eq. 1.28 we obtain

−s223[1 4][3 2]

〈1 2〉[3 1]3
=
s23[1 4]2[2 3]2

[3 1]3[3 4]
(7.21)

Up to an overall constant this is the result given for C0(p2, p3, 0, 0, 0) in the full answer,
shown in a later section.
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7.2 The bubble coefficients

7.2.1 General methods

Techniques exist to obtain analytic results for the bubble [26, 27] and rational terms [28].
Here we shall discuss a method of picking out bubble coefficients due to Mastrolia. Let
us consider the integral with two cut propagators in the centre of mass frame of P

∫

d4lδ+(l2)δ+((l − P )2)f(l) =
1

8

∫

dΩf(l) (7.22)

where dΩ is the integration over the unit sphere. So in the centre of mass frame of P ,
after imposing the delta function constraints, we only have to integrate over θ and φ.
Now since we are interested in isolating the poles in the function f(l) it is convenient to
get rid of the transcendental functions by performing the usual half-angle substitution.

τ = tan
θ

2
, cos θ =

1− τ2

1 + τ2
. sin θ =

2τ

1 + τ2
, ρ = exp(iφ) (7.23)

In terms of these variables we can write

1

4π

∫

dΩ =
1

4π

∫ 1

−1
d cos θ

∫ 2π

0
dφ→

∫ ∞

0
dτ

2τ

(1 + τ2)2
1

2πi

∮

|ρ|=1

dρ

ρ
(7.24)

Defining z = τρ, z̄ = τ/ρ we obtain
∫

dΩ

4π
=

1

2πi

∫ ∫

D
dzdz̄

1

(1 + zz̄)2
(7.25)

where the integration is over the whole complex plane, D. It is convenient also to examine
the decomposition of the momentum l. We decompose the momentum P = p+q in terms
of two massless momenta p and q. In the centre of mass frame of P we have that,

pµ = E(1, 0, 0, 1)

qµ = E(1, 0, 0,−1)

εpq =
1

2
〈p|γµ|q] = E(0, 1, i, 0)

εqp =
1

2
〈q|γµ|p] = E(0, 1,−i, 0) (7.26)

Parameterizing l as follows

l = E(1, sin θ cosφ, sin θ sinφ, cos θ) (7.27)

we find that

lµ =
1

1 + zz̄
(pµ + zz̄qµ + εµqpz + εµpq z̄) (7.28)

We need the develop some familiarity dealing with integrals of the form in Eq. (7.25).
One way to perform the integration is to transform back to real variables. Thus making
the transformations z → x+ iy, z̄ → x− iy,

dΩ

4π
=

1

π

∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

(1 + zz̄)2
(7.29)
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replacing zz̄ with x2 + y2 we can immediately perform the integration. This is not the
direction we pursue. Rather we want to perform the integration directly in the complex
plane using an extension of Cauchy’s theorem, known as the Generalised Cauchy Formula
or Cauchy-Pompeiu Formula.

Let f be an arbitrary function in a finite closed domain D bounded by a piecewise-
smooth curve L, then the Cauchy-Pompeiu formula states that[29]

1

2πi

∫

L
dz

f(z)

z − z0
− 1

π

∫ ∫

D
fz̄

dxdy

z − z0
= f(z0), z0 ∈ D (7.30)

fz̄ =
∂f

∂z̄
=

1

2

(∂f

∂x
+ i

∂f

∂y

)

, z = x+ iy

Let us first consider the case when f(z) is analytic. Then fz̄ = 0, because an analytic
function cannot depend on both z and z̄. For this case we recover the standard Cauchy
integral formula,

1

2πi

∫

L

f(z)dz

z − z0
= f(z0), z0 ∈ D (7.31)

Second, let us consider the case where f vanishes on the boundary of D, denoted by L,
so that we can drop the first term on the LHS of Eq. (7.30),

1

π

∫ ∫

D
fz̄

dxdy

z0 − z
= f(z0), z0 ∈ D . (7.32)

So in general, to perform the integration of a function of the form

∫ ∫

D
dzdz̄ g(z, z̄) (7.33)

The first step3 is to identify the primitive of the function g(z, z̄) with respect to z̄, keeping
z constant,

G(z, z̄) =

∫

dz̄ g(z, z̄) (7.34)

Thus at this point we have written the integrand in the form

1

π

∫ ∫

D
dzdz̄ Gz̄, Gz̄ =

∂G

∂z̄
. (7.35)

Before proceeeding to perform the integration, let us examine the structure of G. Since
G is the primitive of a rational function, g, in general it can only contain two types of
terms,

G(z, z̄) = Grat(z, z̄) +Glog(z, z̄) (7.36)

Now the double cut of a two-point scalar function is rational, whereas the double cut
of higher-point scalar integrals will contain logarithms. Since our aim is to isolate the
contribution from the two-point function, we can drop the logarithmic terms and retain
only the rational piece. We will return to this point in the next subsection when we
consider a simple example.

3Note that we could as well do it for z.
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In the case at hand, Eq. (7.29), (i.e. the scalar two-point integral) we obviously have
no contributions from higher-point integrals. We take

g(z, z̄) =
1

(1 + zz̄)2
(7.37)

and as expected the primitive of g contains no logarithms.

G(z, z̄) = −1

z

1

(1 + zz̄)
(7.38)

Now performing the identifications

fz =
1

1 + zz̄
, z0 = 0 (7.39)

we can use Eq. (7.32) to perform the integral in Eq. (7.25) to recover the standard result
for the angular integral. In general, in addition to the pole at z = 0 we will have other
poles at z 6= 0 indicating the contributions from higher point tensor integrals to the
two-point function.

7.2.2 Simple example

A four momentum satisfying the two on-mass shell conditions in Eq. (7.22) can be written
as

lµ =
1

1 + zz̄
(pµ

2 + zz̄pµ
3 + εµ32z + εµ23z̄) (7.40)

where

εµij =
1

2
〈i|γµ|j] (7.41)

It is convenient to remove an overall scale, so we define a rescaled momentum. 〈l| =√
t〈λ|, |l] =

√
t|λ] where

t =
1

(1 + zz̄)
=

P 2

〈λ|P |λ] (7.42)

so that the rescaled momentum λ is given by,

λµ = pµ
2 + zz̄pµ

3 + εµ32z + εµ23z̄ (7.43)

As a warm up let us consider how various integrands appear when expressed in terms
of z and z̄.

1

l2(l − p2 − p3)2
→ 1

(1 + zz̄)2

1

l2(l − p2)2(l − p2 − p3)2
→ − 1

2p2 · p3

1

(1 + zz̄)zz̄

lµ

l2(l − p2)2(l − p2 − p3)2
→ − 1

2p2 · p3

pµ
2 + zz̄pµ

3 + zε32 + z̄ε23
(1 + zz̄)2zz̄

(7.44)
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Figure 7.3: The double cut of the amplitude M (1)(1−q 1, 2+
q , 3−Q, 4+

Q)

Obtaining the primitives with respect to z̄ we get

1

l2(l − p2 − p3)2
→ − 1

z(1 + zz̄)

1

l2(l − p2)2(l − p2 − p3)2
→ − 1

2p2 · p3

ln(z̄)− ln(zz̄ + 1)

z

lµ

l2(l − p2)2(l − p2 − p3)2
→ − 1

2p2 · p3

(pµ
3 − p

µ
2 )− zεµ32 + 1

zε
µ
23

(1 + zz̄)z

+ logarithmic terms (7.45)

Discarding the logarithmic terms we find the expected contributions to the bubble coef-
ficients coming from the scalar bubble and the rank-one triangle.

7.2.3 Application to AR
4 (1−q , 2+

q , 3−Q, 4+
Q)

Now we turn to the concrete physical example, shown in Fig. 7.3. First we should write
down the amplitude for four-quark scattering, cf Eq. (7.17).

M (0)(1−q , 2
+
q , 3

−
Q, 4

+
Q) =

1

2
〈p1|γµ|p2]〈p3|γµ|p4]

1

(p1 + p2)2
(7.46)

=
〈p1 p3〉[p4 p2]

〈p1 p2〉[p2 p1]
(7.47)

=
〈p1 p3〉[p4 p2]〈p4 p3〉
〈p1 p2〉[p2 p1]〈p4 p3〉

(7.48)

=
〈p1 p3〉[p2 p1]〈p1 p3〉
〈p1 p2〉[p2 p1]〈p4 p3〉

(7.49)

=
〈p1 p3〉2

〈p1 p2〉〈p4 p3〉
≡ [2 4]2

[1 2][3 4]
(7.50)

In addition we shall need the amplitude for opposite helicity gluon quark scattering.

M (0)(1+
q , 2

+
g , 3

−
g , 4

−
q̄ ) =

〈3 1〉3〈3 4〉
〈1 2〉〈2 3〉〈3 4〉〈4 1〉 (7.51)

Now we form the combination as indicated in Fig. 7.3

ML(−l, p2, p3, l23)×MR(p1, l,−l23, p4) =
〈3 l〉3

〈l 2〉〈2 3〉〈l23 l〉
× [4 l]2

[1 l][4 l23]
(7.52)
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We eliminate l23 using the momentum conservation relation,

〈l l23〉[l23 4] = −〈l|P |4] = 〈l 1〉[1 4] (7.53)

So we obtain

ML ×MR =
1

〈2 3〉[1 4]
× 〈3 l〉3[4 l]2
〈1 l〉[1 l]〈2 l〉 (7.54)

Putting in the integration measure and rescaling using Eq.(7.42)

b =

∫

d4lδ+(l2)δ+((l − P )2) ML ×MR

=

∫

dzdz̄

(1 + zz̄)

〈1 4〉
〈2 3〉 ×

s23〈3λ〉3[4λ]2

(1 + zz̄)[1λ]〈1λ〉〈2λ〉 (7.55)

It now is useful to apply the Mastrolia expansion with vectors p2, p3

λµ = pµ
2 + zz̄pµ

3 +
z

2
〈3|γµ|2] +

z̄

2
〈2|γµ|3] (7.56)

Thus we have that

|λ] = |2] + z̄|3]
〈λ| = 〈2| + z〈3| (7.57)

To evaluate the result we shall first find the primitive with respect to z

b =
s323

〈2 3〉[1 4]
×
∮

C
dz̄

∫

dz
〈3λ〉3[4λ]2

〈λ|P |λ]3[1λ]〈1λ〉〈2λ〉 (7.58)

The terms containing 〈λ| are of the form

A =
〈3λ〉3

〈λ|P |λ]3〈1λ〉〈2λ〉 (7.59)

Using Eq. (7.57) we make the following simplifications of the terms in A

〈3λ〉 = −〈2 3〉
〈1λ〉 = 〈1 2〉 + z〈1 3〉
〈2λ〉 = z〈2 3〉

〈λ|P |λ] = 〈2 3〉([3λ] − z[2λ]) (7.60)

Thus Eq. 7.59 becomes

A = − 1

z〈2 3〉
1

(z[2λ] − [3λ])3(z〈1 3〉 + 〈1 2〉) (7.61)

By partial fractioning, obtaining the primitve with respect to z and dropping the loga-
rithmic terms we get

+
[2λ](2〈1|2|λ] + 〈1|3|λ])

〈2 3〉[3λ]2〈1|2 + 3|λ]2([2λ]z − [3λ])
− [2λ]

2〈2 3〉[3λ]〈1|2 + 3|λ]([2λ]z − [3λ])2
(7.62)
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We now multiply by the missing factors

s323
〈2 3〉[1 4]

× [4λ]2

[1λ]
(7.63)

and make substitutions from Eq. (7.57)

[1λ] = [1 2] + z̄[1 3]

[2λ] = z̄[2 3]

[3λ] = −[2 3]

[4λ] = −[2 4] − z̄[3 4] = −[2 4] + z̄
〈1 2〉[2 4]

〈1 3〉
(7.64)

Taking the residue at z̄ = −[1 2]/[1 3] which is the only pole that gives a contribution and
setting z = 〈1 2〉/〈1 3〉 we get

[1 2](5〈1 3〉[1 3] + 2〈1 2〉[1 2])[2 4]2

2〈1 3〉〈2 3〉[1 3]2(〈1 3〉[1 3] + 〈1 2〉[1 2])[2 3]3
(7.65)

Including all factors we obtain for the B0(p23, 0, 0) bubble contribution to the amplitude,

M (1)(1−q , 2
+
g , 3

−
g , 4

+
q̄ ) = −

[

6[1 2][2 4]2

2[1 3][1 4][2 3]
+ 4

[1 2][2 4]

[1 3]2

]

B0(p23, 0, 0) (7.66)

7.3 Gluonic result

Up to a sign the result for the lowest order cross section is, c.f. Eq.(7.51)

Atree
4 (1−q , 2

+
g , 3

−
g , 4

+
q̄ ) = 4

[2 4]3

[2 3][1 4][3 4]
(7.67)

The full answer for the cut constructible part of the 1/N piece of this amplitude is

AR
4 (1−q , 2

+
g , 3

−
g , 4

+
q̄ ) = −2

[2 3]2[1 4]2

[1 3]3[3 4]

[

s12s23D0(p1, p2, p3, 0, 0, 0, 0) − s12C0(p1, p2, 0, 0, 0)

− s12C0(p12, p3, 0, 0, 0) − s23C0(p2, p3, 0, 0, 0) − s23C0(p1, p23, 0, 0, 0)
]

− 4
[2 4]3

[2 3][1 4][3 4]

[

s23C0(p1, p23, 0, 0, 0) +
3

2
B0(p23, 0, 0)

]

+
[

4
[1 2][2 4]

[1 3]2
− 6

[2 4]2

[1 3][3 4]

][

B0(p12, 0, 0) −B0(p23, 0, 0)
]

− 2
[1 2][2 4]2

[1 3][2 3][1 4]
(7.68)
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7.4 Singular behaviour at one-loop order

The results the infrared-singular behaviour of QCD amplitudes at one-loop order with
massless particles have been given in ref. [30]. The results are given in color space
notation, which has the advantage that it can deal with both quarks and gluons in a
seamless way. An explanation of the colour operators acting on simple state is given in

Appendix A of ref.[31]. The one-loop subamplitudeM(1)
m (µ2; {p}) has double and single

poles in 1/ǫ. The coefficients of these poles are given by the following formula

|M(1)
m (µ2; {p})〉R.S. = I

(1)(ǫ, µ2; {p}) |M(0)
m (µ2; {p})〉R.S. +O(ǫ) (7.69)

We see that one-loop singularities are factorized in color space with respect to the tree-

level amplitudeM(0)
m . The singular dependence is given by the factor I

(1) that acts as a

colour-charge operator onto the colour vector |M(0)
m 〉.

I
(1) has the following explicit expression in terms of colour charges of the m quarks

and gluons that participate in the amplitude.

I
(1)(ǫ, µ2; {p}) = g2cΓ

∑

i

1

T
2
i

Vsing
i (ǫ)

∑

j 6=i

T i · T j

(

µ2e−iλijπ

2pi · pj

)ǫ

, (7.70)

where e−iλijπ is the unitarity phase (λij = +1 if i and j are both incoming or outgoing

partons and λij = 0 otherwise) and the singular (for ǫ → 0) function Vsing
i (ǫ) depends

only on the parton flavour and is given by

Vsing
i (ǫ) = T

2
i

1

ǫ2
+ γi

1

ǫ
. (7.71)

The flavour coefficients T
2
i and γi are

T
2
q = T

2
q̄ = CF , T

2
g = CA ,

γq = γq̄ =
3

2
CF , γg =

b0

2
=

11

6
CA −

2

3
TRNf . (7.72)

Note that in Eq. (7.69) the double poles 1/ǫ2 are factorized completely. If we expand
Eq. (7.70) in powers of ǫ and then use the colour conservation relation,

∑

j 6=i T j = −T i.
One obtains the result

I
(1)(ǫ, µ2; {p}) = g2

∑

i

1

ǫ2

∑

j 6=i

T i · T j +O(1/ǫ) = − 1

2ǫ2

∑

i

T
2
i +O(1/ǫ) , (7.73)

that explicitly shows the absence of colour correlations at O(1/ǫ2). Note that the single
poles 1/ǫ will have colour correlations.

An important check on any calculation is that it reproduces the correct result for
the 1/ǫ2, 1/ǫ poles. The form of the singular behaviour has been given by Catani and
collaborators in ref. [30] for the case of massless quarks and for massive quarks in ref.[32].
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7.5 Assembling it all: Inserting the integrals

The result for the box integral with all external lines light-like is,

I
{D=4−2ǫ}
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ǫ

s12s23

×
[ 2

ǫ2

(

(−s12 − iε)−ǫ + (−s23 − iε)−ǫ
)

− ln2
(−s12 − iε
−s23 − iε

)

− π2
]

+O(ǫ) . (7.74)

Triangle with two massless external lines

I
{D=4−2ǫ}
3 (0, 0, p2; 0, 0, 0) =

µ2ǫ

ǫ2

(

(−p2 − iε)−ǫ

p2

)

=
1

p2

(

1

ǫ2
+

1

ǫ
ln
( µ2

−p2 − iε
)

+
1

2
ln2
( µ2

−p2 − iε
)

)

+O(ǫ).(7.75)

Indeed since the triangle integral above, only provides a double pole, its coefficient can
often be guessed without calculation, in order to reproduce the known IR behaviour.

I
{D=4−2ǫ}
2 (p2; 0, 0) =

( µ2

−p2 − iε
)ǫ
(

1

ǫ
+ 2

)

=
1

ǫ
+ ln

( µ2

−p2 − iε
)

+ 2 +O(ǫ). (7.76)

The final result for the color supressed in the one loop qggq̄ amplitude, can be obtained
by substituting these integrals in Eq. (7.68),

AR
4 (1−q , 2

+
g , 3

−
g , 4

+
q̄ ) = g2(µ2)ǫcΓ

4[2 4]3

[1 4][2 3][3 4]

[

− 1

ǫ2

(

− s23)−ǫ − 3

2ǫ
(−s23)−ǫ − 7

2

− 1

2

s23
s13

[(

1− s23
s13

ln
(s12
s23

))2
+ ln

(s12
s23

)

+ π2 s
2
23

s213

]

]

. (7.77)

and cΓ is

cΓ =
1

(4π)2−ǫ

Γ(1 + ǫ)Γ2(1− ǫ)
Γ(1− 2ǫ)

. (7.78)

After taking acccount of the different regularization scheme (four-dimensional helicity vs
’t Hooft-Veltman) that we are using, this result is in agreement with ref. [33].

7.6 Rational terms: Axial anomaly

The material in this section is taken from ??. One of the manifestations of the Adler-
Bell-Jackiw axial anomaly in QED [34, 35] is the peculiar property of the matrix element
of the divergence of the axial current J5

µ = ψ̄γµγ5ψ, where ψ is the “electron” field, taken

70



between the vacuum and the two-photon states. For massless electrons, such a matrix
element reads

MABJ = 〈γ(k1, λ1)γ(k2, λ2) | ∂µJ5
µ(0) | 0〉 =

e2

2π2
εµνλρe∗1µk1νe

∗
2λk2ρ, (7.79)

where k1,2 and e1,2 are momenta and polarization vectors of the outgoing photons with
helicities λ1,2. The matrix element MABJ is purely rational. Below we derive MABJ

using the algorithm of D-dimensional unitarity.
The amplitude MABJ is given by the sum of two triangle Feynman diagrams with the

electron loop. The matrix element is written as

MABJ =
ie2

(4π)(D/2)

∫

dDl

i(π)(D/2)

× Tr

{

k̂12Γγ5

[

l̂ê∗1(l̂ + k̂1)ê
∗
2(l̂ + k̂12)

l2(l + k1)2(l + k12)2

]

+ (1↔ 2)

}

,

(7.80)

where k12 = k1+k2. The external momentum and polarization vectors are four-dimensional,
whereas the loop momentum and the Dirac matrices Γµ and the matrix Γγ5 are continued
to D-dimensions, following the discussion in Section ??. We note that Γγ5 in Eq.(7.80)
denotes theD-dimensional continuation of the matrix γ5. We perform such a continuation
following t’Hooft and Veltman [5]. It is defined by the set of commutation relations

{Γµ,Γγ5} = 0, for µ = 0, 1, 2, 3

[Γµ,Γγ5 ] = 0. for µ = 4, . . . D − 1
(7.81)

Equation (7.80) defines the integrand function of the loop momentum integral but
it does not define it uniquely. This is not a problem since the integral is regularized
dimensionally and shifts of the loop momenta are allowed. We will exploit such shifts
to simplify the computation. To this end, we split the integrand in Eq. (7.80) using the
identity

k̂12Γγ5 = (l̂ + k̂12)Γγ5 + Γγ5 l̂ − 2Γγ5 l̂ǫ, (7.82)

where lǫ = (l · nǫ)nǫ is the (D − 4)-dimensional part of the loop momentum. After the
split, the trace in Eq.(7.80) gets additional terms

Tr

{

k̂12Γγ5

[

l̂ê∗1(l̂ + k̂1)ê
∗
2(l̂ + k̂12)

l2(l + k1)2(l + k12)2

]

+ (1↔ 2)

}

= Tr1 + Tr2,

Tr1 = −2Tr

{

Γγ5 l̂ǫ
l̂ê∗1(l̂ + k̂1)ê

∗
2(l̂ + k̂12)

l2(l + k1)2(l + k12)2
+ (1↔ 2)

}

,

Tr2 = Tr

{

Γγ5

[

l̂ê∗1(l̂ + k̂1)ê
∗
2

l2(l + k1)2
+
ê∗1(l̂ + k̂1)ê

∗
2(l̂ + k̂12)

(l + k1)2(l + k12)2

]

+ (1↔ 2)

}

.

(7.83)

However, it is easy to perform shifts of the loop momenta of the type l→ l− k1,2 forcing
contribution due to Tr2 to vanish. This allows us to re-write Eq.(7.80) in a simplified
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form

MABJ =

∫

dDl

i(π)(D/2)
IABJ(k1, k2, e1, e2, l),

IABJ =
−2ie2

(4π)(D/2)
Tr

{

Γγ5 l̂ǫ
l̂ê∗1(l̂ + k̂1)ê

∗
2(l̂ + k̂12)

l2(l + k1)2(l + k12)2
+ (1↔ 2)

}

.

(7.84)

Since the integrand IABJ is proportional to l̂ǫ, its cut-constructible part vanishes and its
OPP parametrization becomes simple

IABJ(l) =
c1l

2
ǫ

d0d1d12
+

c2l
2
ǫ

d0d2d12
+
b1l

2
ǫ

d0d1
+
b2l

2
ǫ

d0d2

+
b3l

2
ǫ

d1d12
+

b4l
2
ǫ

d2d12
+

b5l
2
ǫ

d0d12
.

(7.85)

We use d0 = l2, d1 = (l+k1)
2, d2 = (l+k2)

2 and d12 = (l+k12)
2 in Eq.(7.85). Although we

work under the assumption that electrons are massless, we note that all the manipulations
we did up to now remain valid also for massive electrons4. In the massless electron case
some of the bubble integrals are scaleless and therefore vanish, but the residues of the
corresponding integrands do not vanish and are, in fact, mass-independent. We will show
below that c1 = c2 and bi=1,..5 = 0.

In the case of closed fermion loops the Dirac algebra has to be performed in six
dimensions with five-dimensional loop momentum l = l(4) + lǫ , where using the notation
(l0, l1, l2, l3, l4, l5) we have that lǫ = (0, 0, 0, 0, µ, 0) and l2ǫ = −µ2. As explained in Section
6.2, for six-dimensional Dirac matrices we use the simple representation

Γ0 =

(

γ0 0

0 γ0

)

, Γi=1,2,3 =

(

γi 0

0 γi

)

,

Γ4 =

(

0 γ5

−γ5 0

)

, Γ5 =

(

0 iγ5

iγ5 0

)

, Γγ5 =

(

γ5 0

0 γ5

)

.

(7.86)

Note that for our choice of l, Γ5 never appears in Eq.(7.84). Finally, we choose a special
reference frame where

k12 = (m, 0, 0, 0, 0, 0) , k1,2 =
(m

2
,±m

2
, 0, 0, 0, 0

)

,

e∗1,2 =
1√
2
(0, 0, 1,±i, 0, 0), l⊥ = αe∗1 + βe∗2.

(7.87)

With this choice of the polarization vectors, it is clear that e∗i kj = 0 , (i = 1, 2). The
coefficients c1, c2, b1, . . . b5 can be obtained by evaluating triple cuts and double cuts on
both side of equation (7.85).

We begin by considering the triple cut specified by the condition d0 = d1 = d12 = 0.
Decomposing the loop momentum on the cut as

lµc1 = x1k
µ
1 + x2k

µ
2 + l̃µ, l̃µ = lµ⊥ + lµǫ , (7.88)

4 In the massive electron case, the divergence of the axial current involves a canonical term ∂µJ
µ
5

= 2mψ̄γ5ψ,

which should be treated separately.
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we find that x1 = −1, x2 = 0 and l̃2 = l2⊥ + l2ǫ = 0. Taking the d0, d1, d12 residue of the
left hand side of Eq. (7.85) we obtain

Res (IABJ) |d0=d1=d12=0 =

−2ie2

(4π)(D/2)
Tr
{

Γγ5 l̂ǫ(l̂⊥ + l̂ǫ − k̂1)ê
∗
1(l̂⊥ + l̂ǫ)ê

∗
2(l̂⊥ + l̂ǫ + k̂2)

}

.
(7.89)

It follows from Eq.(7.89) that the triple cut residue is the fourth-order polynomial in
lǫ. However, it is easy to argue that only limited number of terms can contribute to the
trace. Indeed, for our choice of the loop momentum, l̂ǫ is proportional to Γ4 in Eq.(7.86)
while all other terms in Eq.(7.89) are linear combinations of Γ0,1,2,3. Since the former
is block off-diagonal while the latter are block-diagonal, terms with odd number of lǫ’s
do not contribute to the trace. In addition, for the trace in Eq.(7.89) to be non-zero, at
least four γ matrices are needed in addition to Γγ5 .

Since l̂ǫ anticommutes with all other matrices of the trace, the term with four l̂ǫ
vanishes. We conclude that the only term that contributes to the trace is quadratic in
l̂ǫ. Finally, because l⊥ can be written as a linear combination of e∗1 and e∗2, only terms
that contain two l̂ǫ and no l⊥ terms give non-vanishing contributions. Taking all this into
account, we arrive at a simple expression for the trace and the residue

Res (IABJ) |d0=d1=d12=0 =
2ie2

(4π)(D/2)
Tr
{

Γγ5 l̂ǫ(k̂1)ê
∗
1(l̂ǫ)ê

∗
2(k̂2)

}

. (7.90)

Since the residue of the right hand side in Eq.(7.85) is c1l
2
ǫ we derive the value of the c1

coefficient

c1 = −2D/2+1e2

(4π)
D
2

εµνλρe∗1µk1νe
∗
2λk2ρ. (7.91)

Finally, because of the 1↔ 2 symmetry, we find c2 = c1.
We next proceed to the double cuts. Apart from obvious changes in the physical and

transverse spaces, the only new feature is that on the right hand side of Eq.(7.85) we get
the double cut contribution also from the triple pole terms. We illustrate the calculation
of the double-pole terms taking d0 = d1 = 0, as an example. Although this is a double
cut, the reference momentum is light-like k2

1 = 0, so the parametrization is subtle. We
parametrize the loop momentum on the double-cut as

lµb1 = x1k
µ
1 + x2k

µ
2 + l̃µ (7.92)

and use l2 = 0, l ·k1 = 0 to find x2 = 0 and l̃2 = 0, while x1 is unconstrained. We compute
the d0, d1 residue of the left-hand side of Eq.(7.85) using the expression in Eq.(7.84). We
obtain

Res (IABJ) |d0=d1=0 =
−2ie2

(4π)
D
2

1

(l + k12)2
Tr
{

Γγ5 l̂ǫ(l̂⊥ + l̂ǫ + x1k̂1)

× ê∗1(l̂⊥ + (1 + x1)k̂1 + l̂ǫ)ê
∗
2(l̂⊥ + l̂ǫ + x1k̂1 + k̂12)

}

.

(7.93)

Similar to the triple-cut case considered earlier, only terms quadratic in lǫ contribute.
The non-vanishing terms are proportional to k2 and, after some algebra, we find that
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all terms proportional to x1 cancel and the result is simply expressed through the c1
coefficient in Eq.(7.91)

Res (IABJ)
∣

∣

(d0=d1=0) = c1
l2ǫ

(l + k12)2
. (7.94)

Since the (d0, d1)-residue in Eq.(7.85) is c1l
2
ǫ/d12+b1, we find b1 = 0. A similar calculation

proves that other bubble coefficients also vanish. To obtain the final result, we need the
value of the triangle integral

∫

dDl

(2π)D
l2ǫ

d0d1d2
= −1

2
+O(D − 4), (7.95)

and the value of the coefficient c1 from Eq.(7.91). Adding the two triangle contributions
and setting D = 4, we obtain the anomalous amplitudeMABJ shown in Eq.(7.79).
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